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SUMMARY

This document is Volume II of the final report for the Millimeter
Communication Progagation Program being performed under NASA Contract
No. NAS5-9523 by Raytheon's Space and Information Systems Division for
Goddard Space Flight Center. This program is a study to design experiments
which will determine the effects of the propagating medium on millimeter-

wave space-earth communications.

The First Quarterly Report discussed the effects of the propagating
medium as they are known today and recommended a one-year space-earth
experiment to be performed in 1968 with a 6000 nautical mile medium alti-
tude satellite. The Second Quarterly Report described a one-year space-
earth experiment using a synchronous stationary satellite. It also described
in detail the ground and satellite equipment to be used in an experiment,
most of which is compatible with either the medium altitude or synchronous

altitude Applications Technology Satellites.

The Final Report for this experiment design study consists of three
volumes with Volume I being the summary of the experiment design study.
Volume III contains a descriptive biliography of related reports and a reco-
mmended outline for a propagation data handbook. This report, Volume II,
describes how the raw data, which is collected during the propagation experi-
ments, should be processed and evaluated. Volume II includes a prel{minary
discussion on the design of communication and progagation experiments for
low altitude and synchronous altitude manned spacecraft. Among other
subjects, Volume II gives the effects of refraction on pointing millimeter-
wave antennas and discusses the usefulness of radiometric data, weather

radar data and aircraft-ground propagation tests.

iii




SPACE AND INFORMATION SYSTEMS DIVISION ——m@M8M8MmMm8mMmM ™ ———

Existing computer facilities are equipped to handle the data processing
required for the propagation data collection program. Special computer
programs can be generated to provide estimates of the channel parameters.
Little computation will be required to infer, from these basic parameters,
the effects of propagation on commonly used waveforms and modulation

systems since this information is available in existing literature.

Data to be used in the final description of the propagating medium will
come from three principal sources: amplitude and phase data from the
transmitted waveform, meteorological and radiometric data from correlative
sensors, and spacecraft position data from the satellite tracking facility.
Proper emphasis must be placed upon correlative data processing in order
to classify the atmospheric conditions existing during each measurement
period and determine the probability of each class of conditions during the

annual cycle.

Each ground facility receiver should be equipped with identical signal
processors and analog magnetic tape recorders to minimize data processing
expense. Since each ground receiver shares its RF head with a radiometer,
sky temperature measurements are recorded on the same tape in synchronism
with the signal phase and amplitude. Short term and long term variations
of antenna azimuth and elevation are also recorded on the same tape. Real-
time analog strip line recorder presentations of the same data which was
recorded on magnetic tape would be made at each site for calibration check-
out and operational monitoring; and to provide the cooperating agencies with
immediate access to the raw data. The taped analog data from satellites
and ground facilities would be converted to digital form at a central data
processing facility, An extensive quantity of data will result from the
experimental program, and, of course, it is not necessary to statistically
process all of the data collected. However, it is necessary to look at the

analog presentations for the occurrence of unusual propagation effects to

iv
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insure that the data which is processed adequately represents the statis-

tical model,

The two-dimensional correlation function for a single spatial channel is
an important characterization of the millimeter channel. This function is
measured by those experimenters who need fading statistics and it has direct
ication to the design of communication systems using frequency diversity,
Coherence time, coherence bandwidth and fading rates can be determined
directly from the two-dimensional correlation function. A two-dimensional
Fourier Transform of this correlation function can be taken in order to
describe the scattering function and obtain information regarding doppler and

multipath spreading by the channel.

The two-dimensional spatial correlation function, for two parallel
spatial channels receiving the same signal, is another important characteriza-
tion of the millimeter channel. From this function the coherence aperture
can be determined, which is an important measure of the maximum size
antenna to be efficiently employed. In situations where space diversity
schemes are being considered, the spatial correlation function specifies the
antenna separation required in order to receive uncorrelated signals. A
spatial spectral density function can be derived from the two-dimensional
Fourier Transform of the spatial correlation function. This function des-
cribes the spatial spectrum of the wavefront and the lateral motion of wave-

front with respect to the antenna baseline,

In the initial propagation experiments it is not practical to develop the
complete functions just described. Modified two-dimensional correlation
functions and their Fourier Transforms would be generated which are based
on the amplitude envelopes rather than the complex envelopes of the received
signals. Correlations of radiometric amplitude data with the received

signals will accompany the modified functions during the evaluation phase,
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The initial propagation experiments designed to provide the channel
functions just described should be conducted with aircraft and medium to
synchronous altitude manned or unmanned satellites. Low orbiting space-
craft are not ideal vehicles for basic propagation experiments since they are
just too close to earth to permit reasonable time for gathering quantitative
data. Low orbiting spacecraft do, however, offer payload capacities which
often surpass that which is available at higher altitudes and, furthermore,
the availability of man in a low orbiting spacecraft is of inestimable value in
determining the operational potential of millimeter-wave communications
to support future manned spacecraft missions, The experiments with low
orbiting spacecraft would be communication experiments demonstrating actual

modulation methods to be employed in future systems,

A series of propagation experiments with aircraft would constitute a
useful phase in the overall millimeter-wave program. This phase of propaga-
tion data collection should precede the final space craft equipment design
phase for the space-earth experiments with medium altitude and synchronous
satellites. Slow moving aircraft which fly high above the sensible atmosphere
are attractive because they provide qualitative data, at less expense, within
a shorter equipment design and fabrication period. This qualitative data
would be helpful in designing more intelligent space-earth experiments which

are more complete and which yield quantitative results,

In the experiment designs given in the first and second quarterly reports,
which use medium and synchronous altitude satellites, millimeter-wave
receivers instead of millimeter-wave transmitters could be used to enhance
payload reliability, reduce prime power consumption and weight and make
possible the implementation of these experiments within a shorter time
scale, Nevertheless, the use of satellite receivers does not appear to merit

the propagation data it produces. For one thing, the spatial correlation

vi
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function and its two-dimensional spectral density transform can not be
measured. Other agencies who have useful ground facilities will be dis-
couraged from participating because of the difficulties with transmitter
modifications and the lack of immediate access to raw data. Finally,

coordination among the participating facilities is more difficult since the

satellite has to handle each one separately.

The use of millimeter wavelengths for space-earth communication is
enhanced by the large antenna gains for modest size antennas. Because of
the smaller beamwidths which result, millimeter-wave antenna systems
demand positioning to a greater accuracy. A ground based automatic
tracking and acquisition facility utilized for millimeter-wave space-earth
communications would not require that the refraction of the propagating
wave be known to a high degree of accuracy. However, if this same system
were to supply data required for predicting the satellite orbit, then the
pointing error due to atmospheric refraction would be of prime importance.
Atmospheric refraction is due to both the troposphere and the ionosphere;
however, the ionosphere has negligible effect on propagating frequencies
above 10 Gec. It is important to note that the pointing error in elevation due
to tropospheric refraction, when observing a point on the earth from a
satellite, is one to two orders of magnitude less than that which exists when
viewing a satellite from the earth. This is due to the proximity of the

observer with respect to the bending medium.

As‘discussed in previous reports, basic correlative measurements are
required to classify the weather model existing in each test in order that
the statistical propagation data can be translated to other geographical loca-
tions which experience similar meteorological conditions. Good correlative
measurements will also help explain why certain things are happening to

the test signals which are being propagated through the complex atmosphere,

vii



SPACE AND INFORMATION SYSTEMS DIVISION—M———————

In addition to the usual surface meteorological data which must be
collected at each ground terminal, radiometric measurements in coincidence
with the basic signal measurements are a necessity, The apparent sky
temperature, which is the result of these radiometric measurements, directly
relates to the atmospheric attenuation due to the water and oxygen content of
the atmosphere. The test signals undergo fading due to variations in water
content within the receiving beam. The radiometric measurements will

therefore help distinguish between various mechanisms producing fading.

At ground terminals where considerable millimeter-wave propagation
measurements are to be made, it is worthwhile to employ a weather radar
(3cm to 10cm wavelength) to estimate the rainfall rate along the propagation
path. In experiments involving stationary satellites where the propagation
path is fixed, surface rate data from rain gauges underneath the path could
be a practical supplement or alternative to the radar data. Millimeter-wave
radar do not look promising for measuring rainfall rate profiles since the
radar backscatter is attenuated on its return, therefore, making the radar

data extremely difficult to correct.

This is the summary of work performed during the third quarter of the

experiment design study. A summary of the complete program is given in

Volume 1,

viii
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Section |
INTRODUCTION

This document is Volume II of the final report for the Millimeter
Communication Propagation Program being performed under NASA Contract

No. NAS5-9523 by Raytheon's Space and Information Systems Division for

Goddard Space Flight Center. This program is a study to design experiments
which will determine the effects of the propagating medium on millimeter-

wave space-earth communications.

The scope of work for this study program was defined in Exhibit "A" of
Contract NAS5-9523 and supplemented by the Raytheon Proposal, "A Milli-
meter Communication Propagation Program,'' BR-3011, 3 June 1964. An-
other report which supplements Exhibit ""A' is "Program Definition Plan ‘
for Millimeter Communication Propagation Program, ' FR-4-498-B, 29
January 1965. The Program Definition Plan defines the objectives of the
program, lists the tasks to be performed, and describes the various work

activities under each task, including their time relationships with one another.

The objective of this experiment design study was to design a series of
experiments which show how the objectives of a millimeter propagation pro-
gram can be met. Wherever design problems could not be solved, courses
of action in the form of component tests and breadboard design were recom-
mended. This objective includes development of experiment cost estimates
and time schedules, including that for data processing and evaluation. Results
of the study include equipment design, source of key components, definition
of basic measurements and description of how these basic measureme nts can

be used to meet the objectives of the experiment.
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The First Quarterly Report, which was a report of work accomplished
during the period 1 November 1964 to 1 February 1965, discussed the effects
of the propagating medium as they are known today and described a one-
year space-earth experiment to be performed in 1968 with a 6000 nautical
mile medium altitude satellite. The Second Quarterly Report, which was
a report of work accomplished during the period 1 February 1965 to
1 May 1965, described a one-year space-earth experiment using a syn-
chronous stationary satellite. The Second Quarterly Report also described
in detail the ground and satellite equipment to be used in the experiment,
most of which is compatible with either the medium altitude or synchronous

altitude Applications Technology Satellites.

The Final Report consists of three volumes. Volume Iis a summary of
all the work performed during the program. Volume III has a descriptive
bibliography of reports which were used duringthe study. Volume III also
contains an outline of a propagation data handbook which is recommended as

the final product of the experimental program.

This report, Volume II, is a detailed report of work accomplished dur-

ing the third quarter, 1 May 1965 to 1 August 1965,

Section 2, "Propagation of Millimeter Waves}' is a discussion on atmos-
pheric refraction of millimeter waves. It describes the effects of the at-
mosphere on pointing large millimeter-wave ground antennas at spacecraft,
and also gives the refraction errors encountered when looking down at a
given point on the earth from a spacecraft. This section is a detailed con-
tinuation of the general discussion on refraction which was given in Section 3

of the first quarterly report.

Section 3, ""Basic Correlative Measurements, ' describes the usefulness
of radiometric sky temperature data and weather radar rainfall data in eval-

uating the causes of atmospheric effects on millimeter signal propagation.
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This section completes the discussion on basic correlative measurements

which was introduced in Section 4 of the first quarterly report.

Section 4, "Formulation of Experiments;' discusses: the importance of
aircraft flight tests during the early phases of the propagation program; the
wisdom of using receivers instead of transmitters in an Applications Tech-
nology Satellite; and contains an introduction to the design of communication
and propagation experiment design for low altitude and synchronous altitude
manned spacecraft which includes a work statement recommending further

work in this area.

Section 5 obriefly discusses the design of the spacecraft receivers which

were introduced in Section 4 and Section 6.

Section 6 describes the process of acquiring signals in noise using
phase-locked receivers. Incidentally, Section 6 could more appropriately
have been part of Section 5 in the second quarterly report under''Signal Level

Analysis."

Section 7, '"Data Processing and Evaluation, ' is the most important part
of this report. It discusses the concept of processing and evaluating milli-
meter propagation data taken from space-earth channels. It includes the
definitions of the channel parameters which apply to the millimeter com-
munications channel and the mathematics for computing these parameters

from basic phase and amplitude data.

Section 9 is a bibliography of reports referenced in the other sections.
Appendices I and II supplement Section 7. Appendix III is a collection of
general satellite orbital characteristics pPlus more detailed characteristics
for synchronous and 6000 nautical mile altitude satellites. Specific orbital
characteristics for low altitude (100 to 300 n mi.) satellites were given
in Section 4. Appendix IV gives the general characteristics of millimeter-

wave antennas.

1-3



SPACE AND INFORMATION SYSTEMS DIVISION—M—————

Section 2
PROPAGATION OF MILLIMETER WAVES

This section is a supplement to Section 3 of the First Quarterly Report.
The use of millimeter wavelengths for earth-satellite communications is sug-
gested by the large operating bandwidth, increased antenna gain, and smaller
antenna beamwidths. Antenna systems operating with these smaller beam-
widths demand positioning to a greater accuracy,thus the effects of refraction

on pointing millimeter-wave antennas must be evaluated.

2.1 Effects of Refraction on Pointing Millimeter- Wave Antennas

A ground based automatic tracking and acquisition facility utilized for
millimeter-wave space-earth communication would not require that the re-
fraction of the propagating wave be known to a high degree of accuracy. How-
ever, if this same system were to supply data required for predicting the or-
bit of the satellite, in addition to being a communication terminal, then the

pointing error due to atmospheric refraction would be of prime importance.

Refraction or bending of electromagnetic propagation through the atmos-
phere is due to both the troposphere and the ionosphere. However, the ionos-
phere has very little effect on propagating frequencies above 10 Gec and, as
seen in Figure 2-9, energy propagating at zero degrees elevation angle would
exhibit an error in elevation angle of approximately | microradian when viewing
a 270 nautical mile satellite from the Earth. Thus, the refraction due to the
ionosphere is insignificant and need not be considered for millimeter-wave
propagation. However, this is not the case for the troposphere as shown with
the pointing error curves in Figure 2-5. Incidentally, the pointing error in
elevation due to tropospheric refraction when observing a satellite from the
surface of the earth is one to two orders of magnitude greater than that which

exists when viewing a point on the earth from a satellite. Figure 2-8 gives
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pointing errors at a satellite as a function of altitude and elevation angle,

Because of the turbulent nature of the troposphere in addition to humidity
and temperature inhomogeneities, the radiowave molecular refraction is sub-
ject to fluctuations. These fluctuations in angle of arrival make predictions
of refractions relatively useless for angles belowone degree. However, if
the surface refractivity is know, the tropospheric refraction may be computed
to within a few seconds of arc ofelevation angles greater than 10 degrees as

(1)

demonstrated at Sugar Grove. Yet, the surface temperature and humidity
must be constantly monitored since surface refractivity could vary as much

as 10 % in 4 hours.

The Aerospace Facility demonstrates an overall antenna system position-
ing capability of better than 0.1 milliradians with their 15 foot millimeter-

(2)

wave system when surface refractivity corrections are made. The point-
ing error due to inherent system noise in an automatic tracking state-of-the-
art system is an order of magnitude better than the positioning accuracy of
the Aerospace Facility. This means that many other errors have to be con-

sidered such as: tracking loop errors; mechanical errors of mount; and bore-

sight shift due to temperature gradient.

The antenna systems of interest in space-earth communications are of
the passive tracking variety. Internal errors are to be construed as errors
resulting from parameters of the tracking system, while external errors are

considered errors due to the propagation medium.

2.1.1 Internal Tracking System Errors

Internal errors in pointing are due to many system parameters
such as:
1. The order and parameters of the tracking loop, since these dictate
the lag error which will be a function of the satellite's velocity

and acceleration.
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2. Mechanical errors of the antenna mount including backlash.
3. Error due to inherent system noise.
4. Boresight shift due to temperature gradients.

This tracking antenna system could be either a sequential lobing

system or a monopulse system, In either case, the pointing capability of the

system due to the inherent system noise would be approximately the same.

A single axis tracking system utilizing the sequential lobe switching technique,

shown in Figure 2-1  shall be evaluated. This system is a basic Dicke type

radiometer in closed loop form. The principles of operation of this type of

radiometer have becen described in Appendix VI of the First Quarterly Report.

The two antenna beams of this system are displaced about the bore-

sight axis. When the antenna system is rotated, while receiving radiation

emitted from a fixed point source, the output of the integrator would appear

in accordance with the curve in Figure 22, assuming the system were

operating in the open loop state. This curve goes through a4 maximum, when

the axis of cither antenna pattern is in line with the radiating source. These

particular antenna beams interscect the boresight axis at their 3 db points. In

addition to this signal received, there are fluctuations due to the inherent

system noisc. These fluctuations interfere with the pointing system and

introduce pointing errors. Since the linear portion of the curve is about the

boresight axis, the inverse slope of this scction of the curve may be expressed as:

where:

0
A
S=K —2'13— (2—1)
R

D
1

Antenna Beamwidth

P = Power received by one antenna when the radiating source
lies on the beam axis.
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K = Constant, which is a function of beam shape, beamwidth,

and beam crossover points.

The RMS fluctuations at the integrator output due to the noise in the

system is defined by the classical radiometer expression:

Vo (F-1) [T +7T, ]
T = VI \’_B-_Al = (2-2)
T

where:

T = Fluctuations (R.M.S.)

F = System Noise figure

T = Ambient temperature in degrees Kelvin
o

TA = Antenna temperature in degrees Kelvin

B =

Predetection bandwidth in eycles per second

Post-detection instegration time is seconds

The output fluctuations due to the noise must be expressed as a

function of noise power rather than noise temperature and is converted by

multiplying Equation2-2 by KlB.

T +
N . VB (F- [T, +T,1x (2-3)
V +
where:
N = Fluctuations (R.M.S.) as a function of noise power
Kl = Boltzmann's constant

B = Predetection bandwidth in cycles per second
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The receiver power is defined in equation 5-48 of the Second

Quarterly Report.

= o {2-4)
PR PT GTGR L
where:
PR = Power at input to receiver
PT = Input power to transmitting antenna
GT = Gain of transmitting antenna
G-R = Gain of receiving (tracking) antenna
2
¢ = [ X = Free space attenuation
4nR pace
L = Atmospheric losses

The R.M.S. pointing error resulting from the total noise energyis equal

to the inverse slope of the error curve multiplied by the (R, M. S. ) fluctuations

due to the total system noise power. This results in the following expression:

VB (F-1) [To * TA] K, 8, (2-5)

U e
2K PG Gy L 7

where:

]

]

R.M.S. pointing error due to noise

(4)

Expression 2-5 is also valid for a CW monopulse trackin% s)ystem,
- - - - 3
since it is equivalent to the expressions generated by both Manasse and Barton.

A tracking error of approximately one arc sec has been calculated with

Equation No. 2.5for an earth-satellite communication system with the satellite

in a 6000 nautical mile orbit and the following parameters:

27
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PT = 1 watt
= 62
GR 62 db
GT = 32 db
f = 35 Gc
o
F = 13 db
B = 50 Mc
T = 0.01 seconds
¢ = 204.4 db
L = 10 db (maximum loss occuring at low evaluation angles)
TA = 100 (maximurn occuring at low evaluation angles)
K =2

2.1.2 Tropospheric and Ionospheric Errors

If a satellite ground station is to generate data for orbit prediction,
in addition to performing operational duties in a communications network,
then corrections for atmospheric refractions must be made. The accur-
acy of these corrections depends on the accuracy with which the index of re-
fraction profile is known along the propagation path. Refraction or bending
of the propagating wave occurs in both the troposphere and ionosphere. This

bending is due to the nonhomogeneous medium.

Tropospheric Refraction

The refractivity of thetroposphereis represented by the following
expressions:

b € ) (2-6)
T

N = (n-1) x 10° =%— (P +
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where:

N = Refractivity
n = Refractive index

T

Atmospheric temperature in degrees Kelvin

€ = Constant 79°K/mb

"

b = Constant 4800°K/mb

The above expression is valid for frequencies up to 35 Gc, to an
accuracy of 0.5 per cent. This expression is also valid for refractivity of

infrared propagation when the second term of the expression is omitted.

The refractivity is assumed to decay exponentially at altitudes above

10 km (33k ft.) and is expressed as: (5)
h

= -—— 2-7
N () No e 4.11 ( )
where:
No = Refractivity at sea level
h = Altitude in nautical miles

The refractivity for a wet atmosphere (100 % relative humidity at

all levels) may be computed from the following expression for altitudes less
than 10 km. (6)

N =338 -94.4h + 15.1h°% - 1. 56R° + 0. 084h - 0.00131n°> (2-8)

Refractivity for a dry atmosphere (zero percent relative humidity

at all levels) is again a polynominal expression:

Nd =262 - 46.5h + 3. 17h2 - 0.102h° + 0. 0011. 8h4 (2-9)

where h is in nautical miles. The reflectivity profiles which are shown in

Figure 2-3 have been derived from Equations 2-7, 2-8 and 2-9.
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This angular error in elevation is the difference in angle between
the angle of incidence of the received energy and the true line-of-siteof the
radiating source. As depicted in Figure 2-4 an angular error due to trop-
ospheric refraction is experienced at both the ground terminal and at the orbit-
ing spacecraft. However, the error as viewed from the ground station, is
greater than the error at the spacecraft by orders of magnitude. The error
as observed from the ground station is a function of both elevation angle
(7). For

vehicles at altitudes greater than 925Km (500 n mi) and elevation angles

and altitude of the vehicle as readily observed in Figure 2-5

greater than 5 degrees, the tropospheric refraction error is approximated
(7)
by:

6 = No xlO-6 cot ¢ (2-10)

where:

O
"

Error in radians

N
o

Refractivity at observing station

0

Elevation angle of target

Curves for 6 vs elevation angle for atomspheres of 100% and 0 % relative

humidity are shown as Figure 2-6.

The angular error as viewed from the vehicle is much less than the
errors plotted in Figure 2-6. This error has been computed for satellites
orbiting at altitudes ranging from 100 to 6000 nautical miles, by dividing the
atmospheric refractivity profile of Figure 2-3 into six stratified layers,
as shown in Figure 2-7. The angles specified in Figure 2-7 were
determined through application of Snell's law for the spherically symmetrical

(8)

surface and is expressed as:
b = in ¢ 2-11
Bg_1 Tg.p S ¥k =ng Ty sin P ( )
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SATELLITE

APPARENT
DIRECTION ~__

Yy = Error in direction as viewed from satellite,

6§ = Error in direction as viewed from earth,

Figure 2-4 Path of a Propagating Wave
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Figure 2-5 Ground Station Pointing Error Due to Tropospheric
Refraction for Satellites Below 500 n. Miles
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Figure 2-6 Ground Station Pointing Error Due to Tropospheric Refraction
for Satellites Above 500 n. Miles
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CENTER OF EARTH

Figure 2-7 Atmospheric Layer Stratification
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The final expression for the angle error is:

-1 Tm-l m-l o omyg ) Ty cin 6
y = sin -——-rm ]:[ -—————n - in ¢,
K-l K K
m r
tan"1 r sin = ¢ -sin-1 K-l sin¢
o K=1 K-1 Ty K-1 (2-12)
m
- COSXZ ) si -1 "K-1 sin ¢
m ™ %o Kol K-1 ~°™ — S |
L K |

The error angle has been computed from Equation2-12 for sat-
ellites in 100-6000 nautical mile orbits. However, since these computations
are very time consuming, only the errors or low elevation angles were com -

puted and plotted in Figure 2-8.

Ionospheric Refraction

Radio frequency propagation through the ionosphere is refracted
however, the degree of refraction is not a constant for all frequencies as seen

from the following expression:

2
4 Ne € (2_13)
n =%/1- >
m w
where:
n = Index of refraction

3
Ne = Electron density (electrons/cm)

e = Electron charge (4.8 x 10-10 e.s,u.)
-28
m = Electron mass (9.1 x 10 grams)
@w = Angular frequency of incident wave (radians / sec)

2-16




SPACE AND INFORMATION SYSTEMS DIVISION—Mmm 8 ——

0.3
‘\\\i\\
\\\\\\\ ~\\\“‘~12£L£:"
0.1 N —~—
N ~1. —
\\ \00\ S —
"z’ N \
io' N\ \\ ‘\\
: ANENR t T
=
1 \ \\\
~ /,
NN R T
AN
5 o°a.m*\ \ \\ \\
: 0.0l \\ [~
b 9, B
\L OOO e
\; {920 N ‘\\
\*\600\\\
XYY N
< ~
N "‘*--_!~¥
\\
0'0034 5 6 7 8 9 10 I 12 13 14 I5

ELEVATION ANGLE - DEGREES

Figure 2-8 Satellite Pointing Error Due To Tropospheric Refraction

2-17



SPACE AND INFORMATION SYSTEMS DIVISION —————— '

The refraction due to the ionosphere in millimeter wavelength is
insignificant in comparison to the tropospheric refraction. The error angle,
as observed from the ground station, due to refraction of the ionosphere only,

(7)

is shown as Figure 2-9.
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Section 3
BASIC CORRELATIVE MEASUREMENTS

Basic correlative experiments are required to classify the weather
model existing in each test in order that the statistical propagation data can
be translated to other geographical locations which experience similar mete-
orological conditions. Good correlative measurements will also help explain
why certain things are happening to the test signals which are being propagated
through the complex atmosphere. In addition to the usual surface meteor-
ological data which must be collected at each ground terminal, radiometric
measurements in coincidence with the basic signal measurements are a
necessity. The apparent sky temperature, which is the result of these
radiometric measurements, directly relates to the atmospheric attenuation

due to the water and oxygen content of the atmosphere,

The test signals undergo fading due to multipathing as well as fading
due to variations in water content within the receiving beam. The radio-
metric measurements should,therefore,help us to isolate these two fading
effects. A weather radar, preferably located right at the ground terminal,
could provide another correlative input - a rainfall rate profile along the
communication path. The total effect of rain absorption and scattering can

then be deduced by integration of this profile,

3.1 The Use of Radiometric Data To Distinguish Between The Various
Signal Fading Mechanisms

One purpose of the experiment is to obtain information on the channel
characteristics which will be useful in the design of communication systems.
Conclusions about the physical mechanisms producing fading and other aspects
of channel behavior will be an important part of such information. Correla-
tive radiometric data will be taken in order to distinguish between various

mechanisms producing fading.
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There are evidently three major sources of fading of millimeter waves:

1. Scattering of electromagnetic energy by turbulence in
the troposphere which tends to scatter energy out of (and into)
the receiving antenna beam.

2. Multipath effects which produce coherent phase interference
between signals received over paths which differ by an appreciable
fraction of a wavelength.

3. Absorption of electromagnetic energy by gases in the tropo-

sphere, chiefly oxygen and water vapor.

It should be noted that ionospheric effects probably will not play an
important role at the frequencies being considered for this experiment. (9)
It should also be noted that '"ducting' in the troposphere is also being
neglected since it can be shown using the technique explained in '""Propagation
of Short Radio Waves"(w)that radio signals will not be trapped in a duct if

the elevation angle is greater than 1°. This agrees with a conclusion reached

by Barton. (4)

The first and third effects mentioned above influence incoherent, that
is, noise-like signals as much as coherent signals, that is, signals made up
of frequency components having definite phase relationships. The second
effect is, of course, only present when the signal is coherent. Coherent
fading can sometimes be reduced by use of such techniques as frequency
diversity; thus it would, for example, be useful to the system designer to

know how much of the expected fading is due to coherent interference.

3.1.1 Scattering Effects

The index of refraction varies essentially at random in a turbulent
portion of the atmosphere. Because of this variation in refraction index, the
turbulence tends to focus the radiation at certain places and defocus it at
other places, producing areas of enhanced signals and areas of attenuated
signals. These positions of enhancement and attenuation move with time;

thus the signal at a fixed antenna varies with time. This phenomenon is
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(11)

analagous to ''scintillation'' in astronomical observations.

Turbulent scattering has been studied by Bergma.n(lz)and his result
requires fairly detailed knowledge of the variation of the index of refraction
along the propagation path and therefore can lead to misleading results.
Tatarsky 'has also studied this problem and he shows that the mean-squared
value, 0‘2, of the logarithmetic variation of the amplitude of signal transmitted

through a turbulent medium is:

o = 123c Z /6 L11/6 (3-1)
where,
c ?=107/cm.
n
k = 2w/\
A = wavelength of signal
L = pathlength in cm,

The value of Cn was calculated using optical data but Tatarsky indicates the
value is useful at frequencies as low at UHF, Using representative values
for X and L, one finds there is essentially no fluctuation in the output signal
due to scattering from turbulence in the atmosphere. (This agrees with some
experimental re sults' which show little scintillation at elevation angles

above 4 degrees.)

3.1.2 Multipath Effects

An attempt has been made to estimate the amplitude of multipath
fading from published results of other experiments. One cannot predict with
great confidence, however, the effect of the multipath phenomenon. (This
is one reason for doing the experiment.) Some conclusions will be made here
which indicate that multipath will not be an important source of fading. Data
obtained from the Telstar experiment shows about 1 db of fading once the
satellite was above 5° in elevation. The frequency of transmission from the

satellite was 4, 170 mc and the antenna beamwidth was 0. 2250. It should
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be noted that the total path length through the atmosphere, including
refractive effects, changes from 750 km at 0° elevation to 268 km at 10°

elevation. This may account for some of the diminution in fading.

Barsis, Barghausen and Kirby(le))have made measurements of
fading at 9, 300 mc and found as much as 20 db fading. However, they were
working at low elevation angles and with fairly wide antenna beamwidths,
(30), therefore ground reflection undoubtedly was an important influence on
their results. (It should be pointed out that at least 5% of the time the
transmission loss obtained was less than would be observed in free space.

This, presumably indicates constructive phase interference.)

The results of another experiment conducted by the Bell Telephone
Laboratories is pertinent to this experiment, Fad(i?% of an 11 kmc signal
was measured along an essentially horizontal path . The degree of fading
was found to be well correlated with the amount of rainfall along the path,
even though ground reflection was certainly present and there was indication

(18)

of ducting. Results obtained at the University of Texas also indicate a
high correlation between fading and rainfall along the propagation path. In
these experiments, it seems reasonable to conclude that most, if not all, of
the observed fading was due to absorption by rain rather than multipath

phenomenon,

The National Bureau of Standards has published a composite power
spectrum (Figure 3-12 of The First Quarterly Report) of the phase fluctuation
of a signal transmitted over a 15 mile path at about a 6° elevation angle“g).
Phase fluctuations are not, of themselves, of interest in estimating the
degree of fading but they are important in estimating the amount of signal
degradation due to multipath and the loss of antenna gain due to phase
incoherence across the antenna aperture. The first effect will be considered
first, From the phase fluctuation spectrum the rms fluctuation in range and
the rms fluctuation in the angular difference between the direction of arrival

of the electromagnetic radiation and the actual direction between transmitter

4
and receiver can be found ) Serious fading will result if there are two




‘SPACE AND INFORMATION SYSTEMS DIVISION———

paths for clectromagnetic radiation from transmitter to receiver which differ
by a quarter wavelength, which is about .01 feet at 34 Gec. This implies an
rms change in refractivity of about IN unit along one path. This change in
refractivity will produce about .03 milliradians of bending in the delayed path.
If we assume the portion of the atmosphere producing the bending is 5, 000
feet high, then the horizontal distance between a path which is bent and one
which is not must be about 2 inches. In other words, the refractivity must
change by 2N units in 2 inches. If the path length difference were 1 foot, then
the rms change in refractivity would be about 30N units, implying an rms
angular change of about 0.7 milliradians. This means the horizontal distance
in the troposphere along which the refractivity changes by 30N units must be

20) (31)

that the refractivity does not, in fact, change as drastically as required.

about 20 inches. Measurements taken in Sweden( and in Japan indicate
However, ncither experiment was designed to measure the fine structure of
the troposphere. It does scem reasonable, though, to conclude from the

NBS data that there will not be appreciable fading due to the multipath

phenomenon.

The second effect produced by phase fluctuation is the possible loss
in antenna gain because the phase front across the antenna aperture is not
planar. It will be assumed that the phase fluctuations are produced by changes
in the refractive index associated with a weather pattern moving by the
antenna at about 20 feet per second. If we consider the difference in phase
across an antenna of 20 feet in diameter, we find the total power in the
difference to be essentially zero. Therefore, from the NBS data we conclude

there should be no loss in antenna gain due to phase fluctuations.

The NBS data upon which these conclusions were based represented
averages over some eight years and short time variations may be obscured.
For that reason, one may not have a great deal of confidence in the above
conclusions. Therefore, for the millimeter-wave space-carth propagation
experiment design, we will assume that multipath fading does occur, and we
will estimate the corresponding change in the results of the radiometric

measurement,

3-5



spAcE AND INFORMATION SYSTEMS DIVISION———————

The presence of this multipath fading implies something about the
condition of the atmosphere which, in turn, implies something about the
apparent sky temperature measured by a radiometer. Estimates will be
made of the change in apparent sky temperature associated with fading due

to phase interference by signals transmitted along different paths.

Fading of the type being discussed arises if there are two or more
paths from the transmitter to receiver and the propagation time along these
paths are different. We assume there is a blob in the atmosphere through
which one path travels and which is missed completely by a second path,
Using elementary trigonometric arguments, one can show that a phase
difference of w/4 along the two paths will produce about a 1 db fading loss.

A phase difference of w/4 at 34 Gc corresponds to a range error of about .01

(22)

feet. The results of Muchmore and Wheelon can be used to estimate the

rms change in the refractivity which is about 2.

The refractivity can be related to the atmospheric temperature,

(6)

pressure and water vapor by the (empirical) ""Smith-Weintraub'" equation:

N - 77.6 (P + 48102) (3-2)
T T
where:
N = refractivity
T = absolute temperature in degrees Kelvin
P = atmospheric pressure in millibars
p = partial pressure of the water vapor component

If we assume reference values for T, P and p as follows,
T = 300°K, P = 1013 millibars, and p = 20 millibars, then we can estimate
directly from the above equation the required change in T, P and required
to get a change in refractivity equal to 2. It should be noted that the
calculations will be performed assuming that T, P and p change independently.
Actually, the variations of the three quantities are probably interrelated;
for example, if a blob in the atmosphere has a higher temperature than its

surroundings, it will also probably have a higher water content. However,
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water content (or pressure) and temperature have opposite effects on the
refractivity; thus, the results will indicate bounds on the changes in
temperature and water content (or pressure) required to produce the required

change in refractivity.

It turns out that the required change in temperature to get an
increase in refractivity of 2 units is about 3. 5. It also turns out that the
required change in pressure is about 7.7 millibars. Finally, it turns out
that the required change in the partial pressure of water vapor is about 0. 48

millibars.

Now, the effect of these changes on the radiometric measurements
will be estimated. If the atmospheric blob which is 3. 5° hotter than the
surrounding atmosphere is close to the earth's surface then the radiometric
measurement will be increased by as much as 3. 5° although a 1. 5° increase
is probably more realistic as the blob will undoubtedly not fill the entire
receiving antenna beam. If the blob is not at the earth's surface, then
radiation from it will be attenuated in passing through the atmosphere to the
receiver. If we assume a 40° elevation angle and a clear sky, the apparent
sky temperature T, at 35 Gc is about 17°. If the blob were located in the
first 2 kilometers of altitude, T; would increase at most, 7.5%. If the blob
were located in the next 2 kilometers (that is, between 2 and 4 kilometers,
the increase would be about 1.27%. The apparent sky temperature would
increase in these cases 1.6° and 0. 20, respectively. Results for these
and two other altitudes are summarized in Table 3-1. These results were

calculated using a method given by Barrett and Chung (23).

A 2.5% increase in the partial pressure of water vapor at the earthts
surface from 20.00 to 20.48 millibars will produce about 0.1% increase in
the apparent sky temperature at 17 and 35 Gc. It is unlikely that this increase
will be discernible in the radiometer output. The increase in apparent sky
temperature due to increased water vapor content at 94 Gc or at higher

altitudes will be less than 0.1°.
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TABLE 3-1
BLOB TEMPERATURE AS A FUNCTION OF ELEVATION

Blob Elevation | Percent Increase in Ta Maximum Actua%) Temperature
{(km) Increase ( K)
0 21 3.5
0 - 2 7 1.3
2 - 4 1.6 .20
4 - 6 .9 .16
6 - 8 6 : .10

The absorption coefficient of water vapor is independent of the

(24)

atmospheric pressure whilc the absorption coefficient of oxygen is

(25)

directly proportional to the pressure Thus at 16 and 35 Gc, where water
vapor absorption is significant, there will be little effect on the apparent sky
temperature caused by a blob of air at higher pressure. Even at 94 Gc the
apparent sky temperature will only increase about 0.5%. These results
indicate that a properly designed radiometer will be insensitive to multipath
effects and therefore will help isolate signal losses due to absorption from

signal losses due to multipath.

3.1.3 Atmospheric Absorption

Now the third source of fading mentioned earlier, absorption due to
water vapor and oxygen in the atmosphere, will be discussed. The amount of
attenuation ¢ due to absorption is well correlated with the apparent sky
temperature Ta measured by a radiometer, especially if the apparent sky
temperature is less than about 180°K. The relationship between the apparent
sky temperature and the attenuation in decibels for a signal transmitted
through the entire atmosphere is shown in Figure 3-1. The curve divides
about 180°K to show the area of uncertainty in our present knowledge of the

relationship.
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Figure 3-1 Atmospheric Attenuation as a Function of
Apparent Sky Temperature
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Figure 3-1 is based on results of calculations using the method
given by Barrett and Chung (23), The computer program for performing the
calculations was described in Appendix II, First Quarterly Report. Points
calculated for several different weather models were plotted to give the
average curve shown in Figure 3-1. These twenty-one models arise as
follows: each of the seven models (Cases I through IV plus revised weather
model described in Section 3-1, First Quarterly Report) was considered for
three conditions, ''clear sky', 'cloudy sky'", and ""moderate rain''. Two
other rain conditions were also considered. Finally, one weather model
representing an extreme, and unrealistic, water vapor distribution, was
considered in order to investigate the boundaries of the temperature-
attenuation relationships. It should be noted that results for signals at

three frequencies: 16, 35 and 94 Gc and for all elevation angles, were used

to produce the curve in Figure 3-1.

The interesting result in this exercise was the lack of spread of
the calculated points about the curve of Figure 3-1 for different weather
models and different frequencies at temperatures below 180°K. This is
illustrated in Figures 3-2 through 3-5. In Figures 3-2 and 3-3, the points
for the revised weather model described as Case 6 in Section 3, First
Quarterly Report, are plotted. In Figure 3-2, points corresponding to
different frequencies are distinguished, but points corresponding to the
different weather models are not; for example, points calculated for 16
Gc /clear sky and 16 Gc /cloudy sky are all indicated by circles. In Figure3-3,

points corresponding to different weather conditions are distinguished, but
points corresponding to different frequencies are not. The spread of points

about the curve shown in Figure 3-1 is seen to be very small.

In order to get more information on the possible distribution of
points about the curve due to variations in the weather pattern, points for
each weather pattern were plotted on the same axes in Figure 3-4. In order
to make the graph more readable the number of points plotted was reduced

by considering,for each weather model,onfy one frequency: 35 Gc, and one
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weather condition: cloudy. (It should be pointed out that the drafting
difficulties tend to exaggerate the scatter of the points.) In general, the
points corresponding to Case 1 and Case 2 are seen to be scattered the
further {rom the mean of the distribution. The weather model of Case 1
has a sea level temperature of 268°K, while the weather model of Case 2
has a sea level temperature of 302°K. The sea level temperature for the
various other weather models cluster about 29301(= (The temperature
distributions with altitude have different shapes for the six models.) If the
apparent sky temperatures for Case 1 are multiplied by —;—Z—g and the apparent
sky temperatures for Case 2 are multiplied by 3-2—.—-?22 » the resulting apparent
sky temperatures are essentially indistinguishable from those obtained from
other weather models for the same value of attenuation. (There are physical

reasons why one would expect this to be true but the argument is fairly

involved.)

As another check on the range of weather conditions for which the
curve shown in Figure 3-1 is applicable, another weather model was
considered. This model, while not a realistic representation of an expected
actual weather, does give an extreme case with which a realistic weather
model can be compared. These realistic and extreme weather models are
described in Figure 3-6. The realistic weather model is the revised weather
model described in the First Quarterly Report. The extreme weather model
for cloudy weather consists of a cloud with a uniform water content of 0.3
grams /cubic meter extending from 0.9 kilometers to 1.8 kilometers. The
rain weather models consist of the same cloud and a uniform rainfall between
0.9 kilometers and sea level. The rainfall rate is 4 millimeters per hour.
The comparison between the models is shown in Figure 3-5, where clear,
cloudy and rainy conditions are considered. Normalization of sky

temperature with surface temperature has been accomplished.

Several important conclusions can be drawn from Figures 3-1

through 3-5.
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Figure 3-6 Realistic and Extreme Weather Models
For T_ = 200°K (¢ < 6 db) the uncertainty in ¢ is < < 0.1 db.
With a radiometer error of 5% (A T, = 10°K at T_ = 200°K),

the error in ¢ is =< 0.5 db.

<

For T 240°K (¢ < 10 db) the uncertainty in @ is < 1.0 db.
With a radiometer error of 5% (A Ta = 129K at Ta = 240°K),

the uncertainty in o is 8.0 to 14.0 db.

In the data processing operation Ta can be automatically
converted to ¢ (within the accuracies mentioned above) using
curves similar to Figure 3-1 which take into account surface
temperature and pressure underneath the propagation path,

receiver altitude and carrier frequency.

In the data processing operation,the ¢ obtained from radiometric

temperature can be compared with total signal losses obtained

from the signal receiver data to determine if fading other than
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that due to atmospheric absorption exists. As Figure 3-1 shows this can
only be done effectively at Ta =<240°k (0 < 10 db) because of present
uncertainties in the Ta to 0 conversion. If we are interested in fading when
o > 10 db (most space-earth system applications are probably not interested
in that much of a penalty) then further effort is required. Table 3-2 which
was derived from ¢ versus elevation angle data, given in Figures 5-8 through

5-10, of the Second Quarterly Report, gives the elevation angles at which

TABLE 3-2

ELEVATION ANGLES BELOW WHICH ATTENUATION DUE TO
ATMOSPHERIC ABSORPTION IS 10 DB OR GREATER

(degrees)

Weather Conditions 16 Gc 35 Gc 94 Gc
Clear 0 <5 5
Cloudy 0 5 20
Rain <5 10 40

The conversion from radiometric sky temperature to signal
attenuation in a space-earth communications link is most accurate when the
atmosphere is homogeneous in the horizontal plane. As illustrated in
Section 4.1 the apparent sky temperature, as measured by a radiometer,
represents an average temperature of the medium within the antenna beam
while the attenuation of the actual signal depends only on the conically shaped
medium between the satellite and the ground antenna. The point is that, if
the medium is horizontally inhomogeneous, the received radiation may have
gone through a portion of the atmosphere which absorbs significantly more
or less than the average absorption indicated by the radiometer. Incidentally,
the larger the antenna used by the radiometer and the signal receiver, the

more accurate will be the conversion.

To get an indication of the degree of inhomogeneity in the atmosphere,
a second signal receiver /radiometer located some distance from the first,
could be used. The signals from the two receiver /radiometers would be

cross-correlated for various relative delay times. The amount of
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cross=-correlation and the relative delay time at the peak of the cross-
correlation function could be used to give information on the atmospheric
mechanism producing the fading. For example, if the altitude of the in-
homogeneities is known, the velocity of motion can be determined from the

relative delay time at which the cro ss=-correlation function is a maximum.

An estimate on the magnitude of the required spacing between
antennas will now be made. The near field for a 15 ft. parabolic antenna
at 35 Gc extends about 4.7 kilometers into the troposphere. Thus, a 150 ft.
spacing would probably resolve inhomogeneities in the lower troposphere where

there is some evidence that most of the variation in the refractive index

(20)

occurs . On the other hand, the center of thunderstorms occurs at about

(26)

10 kilometers altitude . The beamwidth of 15 ft. parabolic antenna at
35 Gc is only 100 ft. at 10 kilometers, thus a larger antenna spacing would
probably be useful if inhomogeneities associated with stormy weather are to be

studied.

Another method of resolving inhomogeneities in the atmosphere is
by measuring the apparent temperature of the Moon using the same receiver
immediately before or after receiving from the satellite. The signal from
the satellite and the sampled apparent temperature of the Moon would be
cross-correlated, The size of the inhomogeneities that can be resolved
depends, of course, on the angular distance between Moon and the satellite.
It should be noted that the absolute temperature of the Moon need not be
accurately known if only the degree of inhomogeneity in the atmosphere is
of interest (as long as the Moon temperature does not change significantly

between observations).

However, the absolute measurements of the apparent temperature
of the Moon would give an independent value for the attenuation due to
absorption. The Moon is a large source reflecting noise-like solar radiation
so presumably all the fading of the signal from the Moon is due to absorption.
Thus, measurements of the Moon temperature would be useful in distinguishing
the various mechanisms producing fading. The accuracy of the estimate of

attenuation due to absorption using the Moon depends, of course, on the

3-18




‘SPACE AND INFORMATION SYSTEMS DIVISION——— e

accuracy at which the apparent temperature of the Moon is known.

Dr. J. Copeland of Ewen-Knight Corporation(27) has estimated the average
temperature of the Moon to be 2100K. This value is accurate to at least
15°K. Measurements have been reported by Russian astronomex('zss) which
indicate that at 0.5 cm wavelength the apparent average temperature of the
Moon is 204° K + 4°K and that at 1. 63 cm wavelength the apparent average

temperature is 207°k 1 3%k,

3.2 The Use of Weather Radar to Determine Signal Attenuation Caused
By Precipitation

At ground terminals where considerable millimeter -wave propagation
measurements are to be made, it appears worthwhile to employ a weather
radar as a correlative tool to determine precipitation rates along the
propagation path. A radar such as the WSR-57 operating at 10 cm should
detect precipitation at rates greater than 1 mm/hr at most altitudes of
interest. In experiments involving synchronous satellites, that is, the
propagation path is fixed, surface rate data from rain gauges underneath the

path could be a practical supplement or alternative to the radar data.

A good general introduction to the capabilities of weather radar is
given in '""Radar Meteorology' 2 ’” 'Thereare two types of weather phenomena
which will produce a radar return. One is moisture droplets in the atmos-
phere such as rain, fog or hail. The other is regions in the atmosphere where
there is a marked change in the index of refraction, but no water or ice
particles. (Returns from this latter type of phenomena are called ""angels'.,)
Both of these phenomena will affect the propagation of millimeter waves, the
moisture particles producing absorption and scattering, and the angels

producing scattering and multipath effects.

One might expect, therefore, that the number of angels detected by a
weather radar would give significant information about the amount of scatter
of millimeter waves or the amount of signal degradation due to multipath.
Unfortunately, this does not seem to be true. For one thing, there is some

disagreement as to the exact cause of angels.(31’ 32), Even knowing the
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mechanisms, it is difficult to predict theoretically the relation between the
power scattered in different directions from turbulent variations in the
refractive index.(33’ 34) The signal observed by a radar is, of course, a
result of radiation scattered directly back to the radar, while the signal
received from a satellite is the result of radiation scattered in the forward
direction. Furthermore, no applicable experimental results are available.

It is expected, therefore, that while a weather radar will be quite useful in
indicating if there is something invisible in the atmosphere which is producing

fading, a weather radar probably cannot be used to determine whether the

cause of fading is due to scattering or due to multipath.

Moisture particles in the atmosphere produce a radar return. The
amplitude of the return depends upon the wavelength of the radiation. Short
wavelengths (about 1 cm) can be used to detect some clouds but in one experi-

(

because the detected clouds absorb as well as reflect, it is difficult to make

ment only about 50% of the clouds produced a return. 35) Furthermore,
quantitative estimates of the water content of the clouds from radar returns.
Therefore, it does not appear to be useful to attempt to use short wavelength

(36)

radars to estimate the absorption due to the water content of clouds.

Radiation at 10 cm wavelengths is not appreciably scattered by the
small moisture particles making up clouds, but is scattered by the larger
particles making up rain, snow or hail. Therefore, a 10 cm radar would
be useful in looking through a cloud cover to determine if there is precipi-

tation along the propagation path.

3.2.1 Radar Sensitivity to Precipitation

A great deal of work both theoretical and experimental, relating

to the amplitude of the §ower return from a rainstorm to the rainfall

29,30
rate has been don(e.g' The major result is Equation (3-3).
- C 1.6
Pr = r—z R (3-3)
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where,
_15; = the power, in watts, received from a rainstorm
T = the slant range, in meters, from the radar to the storm
R = the rainfall rate in mm/hr.
C = constant depending on the radar

The formula for C is given in Equation {3-4).

PA «vygr
- 7 t p 2
C = 128« x K™N (3-4)
where,
Pt = transmitted power in watts
Ap = area of antenna in square meters
¥ = antenna azimuth beamwidth in degrees
B = antenna elevation beamwidth in degrees
T = pulse width in seconds
A = wavelength in meters
2 2 . . .
K = m -1 where m is the complex index of refraction. A
m + 2 value of .93 for KZ is assumed which
corresponds to liquid water at about .10°C.
N = empirical constant which relates power backscatter to rain-
fall rate at those frequencies where the Rayleigh approxi-
mation applies. A value of 0.4 x 10_16 is used as represen-

tative for most rains which includes a 0.2 correction factor

to make the theoretical results agree with experimental data.

Based on the characteristics for the WSR-57 radar, which are given

in Table 3-3, the constant C comes out to be 7 x 10-4 and, using Equation 3-3

the minimum detectable rainfall rate at any given slant range is:
. 625

R . 2[100 P rz] (35)
min - r
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Figure 3-7 is a curve of minimum detectable rainfall rate as a
-4 )
function of range for the radar constant of C= 7 x 10 . Using this curve
and the altitude versus slant range curves of Figure 3-8 (corrected for
. . -0.04385h

atmospheric refraction using refractive index, n(h) = 1 + 0.000313 e
with h in thousands of feet), the performance of the WSR-57 radar can be
estimated. This radar should detect most rainfall rates of interest and

accurately determine rates greater than 1 mm/hr at all slant ranges of

interest above 2O elevation,
TABLE 3-3

S-BAND CHARACTERISTICS OF THE WSR-57 WEATHER RADAR

Antenna Gain 38.5 db

Antenna Beamwidth 1.8 degrees

Antenna Diameter 12.0 feet (3.7 meters)
Peak Power 500 kilowatts

Pulse Width 0.25 & 4.0 microseconds
Pulse Repetition Freq. 658, 154 pps

Resolution 1.6 mm/hr. at 250 n mi.
Elevation Scan -10 degrees to 45 degrees
Azimuth Scan 360 degrees

Battarﬁzg\)shows that the value of the rainfall rate calculated from
radar data with Equation3-5 can actually vary by plus or minus 50% from
the rate measured by a network of rain gauges. (This conclusion is also
implied by the results of Hathaway and Evans.(”) Some of this spread
results from the wide variation in rainfall rates within a storm. It seems
clear that the network of rain gauges was not nearly dense enough to give
close estimates of rainfall rates in the experiment of Hathaway and Evans

and also in other experiments.(37' 38)
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3.2.2 The Angle Resolution Problem

It should be pointed out that the antenna beam-width for a weather
radar will be much wider than that of the receiver for the millimeter waves.
This will mean that the weather radar return will indicate the average amount
of rainfall in a volume which may be different from the actual rainfall through
which the signal from the satellite passes. There are two ways to improve

the resolution of the radar:

1) Instead of letting the radar beam track the millimeter-wave
beam, the radar antenna drive system is programmed to
scan the beam first in the elevation plane containing the
propagation path and then in the azimuth plane containing
the propagation path. By knowing the shape of the beam and
applying the proper coordinate conversion, the accuracy of

the rate profile can be improved.

2) The WSR-57 radar also has C-band and X-band heads. With
the same antenna size, each angular dimension of the
resolution volume can be reduced by factors of 0.55 and
0.3 respectively. However, when operating at wavelengths
below 10 cm, attenuation corrections must be made or else
the conversion from power received to rainfall rate will be
in error. Radiometers provide the total attenuation for the
millimeter -wave signals but it does not provide an atten-
uation profile along the propagation path from which to make
the necessary corrections. Therefore, if we increase the
frequency of the radar to improve resolution we probably

do not gain much in rainfall rate accuracy.
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3.2.3 Conversion of Rainfall Rate to Signal Attenuation

Once the rainfall rate has been estimated, the amount of attenuation
due to rain can be calculated. This attenuation is caused both by absorption
and scattering. This problem has been studied theoretically and experi-

(29, 39, 40) . . L
mentally. The theoretical result is that the attenuation is given
by Equation (3-6):

Attenuation (db) = K2 R 7Y dr
) (3-6)

where,

R is the rainfall rate as a function of slant range r and,

KZ = a constant dependent on the wavelength (at 1 cm, the value

of K2 is about 0. 2 db/km per mm/ hr)

Y = another constant also dependent on the wavelength (at 1 cm,

(29)

the value of yis about 1.0 .

(39)

Experimental results are summarized in Table 3-4 and

Table 3-5. Table 3-4 indicates the spread in the value of the attenuation
(per unit length, per unit rainfall) at different wavelengths and Table 3-5
indicates how well the experimental data fits the theoretical results, at

least at one frequency.

It would appear then that the weather radar would be useful in giving
an estimate of the rainfall rate along the pPropagation path and subsequently
the total signal attenuation. Such an estimate could also be obtained from
a line of rain gauges along the propagation path (assuming a synchronous
satellite is used) and such a line might be valuable as a check on the radar
estimates if one can assume accurate altitude profiles of rainfall rate.

Incidentally, there is evidence of precipitation in the atmosphere which does
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TABLE 3-4

SUMMARY OF ATTENUATION MEASUREMENTS

Wavelength Attenuation, db/km per mm/hr.
Organization A {cm)
Upper Bound Lower Bound Average
BTL 3.2 0.090 0.012 0.019
RL 1.25 0.40 0.09 0.17
NRSL 1.25 0.34 0.23 0.25
BTL 1.09 0.27 0.15 0.18
Clarendon 0.96 0.25 0.10 0.15
BTI 0.62 0.37 0.27 0.31
TABLE 3-5

COMPARISON OF EXPERIMENTAL AND THEORETICAL ATTENUATION

(M = 0.6 cm)
Rainfall Rate Attenuation - (db)
R-{mm/hr) Experimental Theoretical
10 3.7 3.8
20 7.4 7.0
30 10.6 10.0
40 13.6 12.7
50 16.0 15.4
70 20.4 20.0
100 26.5 27.0
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not reach the ground. The weather radar is especially useful in night-time
measurements or measurements in the presence of fog, when the millimeter
wavelength receiver operator cannot observe weather conditions along the

propagation path.
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Section 4
FORMULATION OF EXPERIMENTS

This section of the report discusses three topics relating to
philosophy of experiment design. Two of these topics are best expressed

by the following questions:

1) Isn't an aircraft flight test phase necessary to supply
information for more intelligent design of propagation

experiments using satellites ?

2) Why not use millimeter-wave receivers in ATS type space-
craft,instead of millimeter-wave transmitters,and thus
enhance payload reliability, reduce prime power consumption
and weight, and make possible the implementation of these

experiments within the ATS time schedule ?

The third topic is related to communication and propagation experi-
ment design for low altitude and synchronous altitude manned spacecraft.
With the recent establishment of NASA and Air Force programs for manned
earth-orbital missions, an attempt was made to include as much experiment
design information as possible in these reports. The remaining work that
needs to be accomplished, but is not within the scope of this program, is

expressed in the form of a study work statement.

4.1 Use of Aircraft to Simulate Space-Earth Communication Links

A series of propagation experiments using aircraft, whose objectives
are to determine the effects of the atmosphere on the characteristics of

space-earth communications channels, would constitute a useful phase in
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the overall millimeter-wave propagation program.

This phase of propagation data collection should precede the final
spacecraft equipment design phase for the space-earth experiments.
Air-ground experiments, however, should not be considered as a satis-
factory substitute for the complete space-earth experiments. As compared
to satellites, slow moving aircraft which can fly above most of the sensible
atmosphere are attractive as vehicles for conducting propagation experi-
ments because they provide qualitative data, without the threat of additive
noise, at less expense, within a shorter equipment design and fabrication
period. This qualitative data would be helpful in designing more intelligent
space-earth experiments which are more complete and which yield

quantitative results.

An air-ground link could quickly provide fading data as a function of
elevation angle for a variety of weather models. If the experiment is
properly designed, a good assessment of the effects of multipath fading
near the horizon could be obtained. In addition, coherence bandwidth as a
function of elevation angle for a variety of weather conditions can be
determined. One problem in instrumenting air ground experiments is to
equip the ground terminal with an aircraft acquisition and tracking capa-
bility. It is desirable to determine the variance of the channel character-
istics as a function of beamwidth including those very narrow beams, which
are expected to be used in space-earth channels. These resulting large
ground apertures, far bigger than necessary to complete an air-ground

link, create an aircraft acquisition and tracking problem.

The features of aircraft instrumentation which make the air-ground

phase of experiments practical are the lesser payload restrictions relative

to those found aboard a spacecraft. Reliability requirements are much
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less because of the ability to correct malfunctions between flights. Ample
prime power is available so that sufficient #f power levels can be achieved

without regard to conversion efficiency and heat dissipation.

4.1.1 Effects of Aircraft Altitude and Velocity on Simulation

From a cost effectiveness standpoint, aircraft are not satisfactory
substitutes for satellites when determining the complete characteristics of
space-earth channels. Before giving specific reasons for this statement,
it is important to briefly review the effects of the atmosphere on milli-
meter -wave propagation which are subject to distortion by aircraft speed

and altitude.

Propagation of millimeter-waves through the atmosphere has an
effect upon the maximum useful receiving aperture and the maximum useful
receiver pre-detection integration time. The magnitude of these effects
decrease with increasing ground terminal elevation angle and decrease with
increasing distance between the receiving system and the perturbing medium.
Spatial variations in index of refraction degrade lateral coherence, that is,
they spoil the wavefront which is incident upon the receiving aperture. The
amount of degradation in aperture gain due to these irregularities increases
with aperture size. Variations in the degradation effect the signal fading

spectrum along with variations in atmospheric absorption.

Temporal variations in index of refraction along the propagation
path are caused by changes in the inhomogeneous atmosphere by circulation
of air and the change of path position due to satellite movement with respect
to the ground terminal. The degradation in aperture gain due to any
temporal variations is reduced by the tracking system's ability to respond
to slow variation in wave front tilt. In other words, the tracking system

cancels out the low frequency spatial and temporal components of the two
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dimensional spectral density function for lateral coherence which is sketched

in Figure 4-1.

Temporal variations also reduce the maximum useful predetection
integration time because each spectral line in the wave -form is doppler
spread by changes in average speed of propagation over the total path.
This pre-detection integration time, however, increases with increasing
aperture size because of the averaging effects with a larger segment of

wavefront.

The ideal experiment would provide a complete statistical model of
this two-dimensional lateral coherence function and the accompanying
cross~-correlation function. However, for the early experiments, the
effects of the propagation medium on spectral purity is partially masked

by the short term instabilities of the millimeter-wave transmitter until

Figure 4-1 Two Dimensional Spectral Density Function For

Lateral Coherence
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such time that the much needed improvements in state-of-the-art have been

accomplished. An indirect account of the effects on spectral purity can be

obtained by observing the amplitude fading spectrum.

The inability of the geometry of air-ground links to simulate the

geometry of space-earth links creates certain atmospheric effects which

preclude complete substitution of aircraft for spacecraft. There are three

major reasons:

1)

2)

To determine the spatial dimension for lateral coherence,it is
desirable to vary the width of the spatial filter - that is, change
the effective receiving aperture size; and change the baseline
distance between two spatial filters. Air-ground links for this
purpose are difficult to implement because the aircraft is moving.
Incidentally, low-orbiting spacecraft are even more undesirable
because the spacecraft is seldom within view of the ground
terminal. The satellite should be stationary when lateral
coherence measurements are being performed because it greatly

simplifies the ground instrumentation required.

The drawing in Figure 4-2 illustrates another reason why
aircraft data could present results which do not truly simulate
space-earth channels. An aircraft flies just above the sensible
atmosphere and as a result the volume of the atmosphere which
effects the channel is conical in shape with the apex at the
aircraft and the base being the ground antenna. When a
satellite is used, even a 100 mile altitude satellite, the volume
of the atmosphere approaches that of a cylinder whose diameter
is equal to the diameter of the ground antenna. The effects on
the channel are the same when the atmosphere is homogeneous.

When the atmosphere is turbulent, especially at the higher
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Figure 4-2 Dissimilarities of the Atmospheric Volume Involved in

Space-Earth and Air-Ground Communication Channels

altitudes, the difference in channel effects might become
appreciable,

Another interesting point to make concerns the use of radio-
meters and weather radar. An essential input to the experi-
ment results is sky temperature which gives a measure of to-
tal atmospheric absorption. Rainfall rates along the path of
propagation as measured by a weather radar are also impor-
tant. The volume of the atmosphere which affects the radio-
meter and radar measurements are also cones.

The apex of each of these cones is at the ground receiver dish
(excluding the near field which is cylindrical) and its cone
angle is equal to the beamwidth of the antenna. (See Figure
4-3). When the condition of the atmosphere is homogeneous,
the effects are negligible, but when the atmosphere is turbu-

lent the effects might be significant, The final point to make,
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Figure 4-3 Comparison of Atmospheric Volume Involved in Radiometric

3)

and Radar Measurements with Atmospheric Volumes Which
Affect Communications

is that the inverted cone will more nearly represent a cylinder
in the space-earth channel than it will represent a cone in the

air-ground channel.

The third reason why aircraft data could present results which
truly simulate space-earth channels is shown in Figure 4-4,
Aircraft flying just above the sensible atmosphere cause the
path of propagation to change in position. The movement of

the aircraft introduces an apparent wind speed which is propor-
tional to the velocity of the aircraft and proportional to the
altitude at which the turbulence exists. This apparent wind

speed can be an order of magnitude greater than true wind
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Figure 4-4 Apparent Wind Profile Caused by Aircraft Motion And
Its Relation To True Wind, Rainfall Rate and Water
Density Profiles

speeds which are normally encountered. This '"wind'' effect

is not too serious when simulating space-earth channels for low
orbit spacecraft, but when simulating space-earth channels for
high altitude spacecraft and deep space probes, there would be
some question. Aircraft movement expands the two-dimension-
al spectral density function in the time domain and direct
compression of the time scale may not necessarily simulate the

long range channels.

The differences between space-earth channels and air-ground
channels as discussed above might turn out to be insignificant
but one cannot be completely sure until some measurements are

made. To improve the simulation one should strive to use
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slow moving high altitude aircraft. The effects of atmospheric
turbulence on the short term motion of the aircraft decreases
with altitude. If the bulk of the perturbing medium happens to
be near 8 to 15 thousand feet, then an air-ground channel with
a high altitude aircraft (about 40 thousand feet) more nearly
represents the space-earth channel. Also the higher the air-
craft altitude and the slower the aircraft speed the smaller the
apparent wind speeds. Everything that is done to improve
simulation increases the costs of the aircraft flight tests. This
leads the discussion to one final area - cost effectiveness of
aircraft tests versus cost effectiveness of spacecraft tests.

A complete cost effectiveness study is not within the scope of

this report, but certain preliminary ideas can be introduced.

4.1.2 Cost Effectiveness of Aircraft Tests

One of the objectives of the overall millimeter-wave propagation
program is to provide the communication system designer with the necessary
statistical knowledge to accurately assess the effects of the propagation
medium on: the required effective radiated power and effective receiver
sensitivity to achieve given nominal data transmission capacities; the
signal fidelity or error rate probability of transmitted signals after propaga-
tion through the channel; and on the reliability or percentage of time these

quantities and qualities are expected to prevail.

A typical work cycle with a stationary satellite which would be
satisfactory for the propagation experiments would be to operate during a
five day work week, ten to twelve times,spaced seasonally during the year.
A full work week every four or five weeks may be the most attractive
arrangement from a manpower scheduling point of view. This several week

period between tests also provides an opportunity for examining data and
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making changes in test procedure and ground equipment before the next test.

Each work week could consist of four data collection sessions, four
to six hours duration for each; and appropriately spaced so that each station
collects data during dawn and dusk and near noon and midnight. These
sessions include pre-test and post-test data collection check-out and
calibration with the spacecraft simulator which is located at a remote
boresight facility. No planning would be made with regard to weather since
it is unpredictable and since work schedules must be established well in
advance. Enough samples would be taken during the year which should result

in a reasonable cross-section of the normal meteorological variables.

With three ground stations working in different parts of the country,
this typical work cycle represents 864 hours of data. It is, of course, not
necessary to statistically process all of the data collected in a four to six
hour period, but it would be necessary to look for the occurrence of unusual
propagation effects, to insure that what is processed,adequately represents
the statistical model. If the expense of a high altitude aircraft is compared
with the cost of a payload aboard a synchronous satellite to provide that
many hours of good data, it can be shown that spacecraft can be very
competitive with aircraft as platforms for conducting the propagation
experiments. This is based on the assumption that the millimeter-wave
experiment is one of several experiments being performed with the satellite

such as in the case of the Applications Technology Satellites.

4,2 Propagation Experiments Using Only Receivers In Small
Satellite Payloads

One question, which is continually being asked by those who are
interested in millimeter-wave propagation experiments using satellites,

is: ""Why not use millimeter-wave receivers in the satellite instead of
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millimeter-wave transmitters and thus enhance payload reliability, reduce
pPrime power consumption and weight, and above all, make possible the

implementation of these experiments within a shorter time scale ?"

For the initial propagation experiments, the First and Second Quarterly
Reports specifically recommend down-links instead of up-links and the
reasons for this recommendation are repeated here. The chief purpose of
this Section and Section 5. 1 ""Multiple Frequency Receiver Configuration for
Small Payloads' is to extend the discussion on up-links versus down-links
one step further by discussing the design of satellite receivers and weighing
the simplification in payload against the reduction in experiment value to
determine if the experiment is worthwhile. The points pro and con are made
with the synchronous ATS (Applications Technology Satellites) in mind as the

Primary candidate for the space platform.

The key to a successful experimental program which involves the
assistance of several existing ground installations, each controlled by a
different agency, depends on the ease with which these facilities can partici-
Pate. This ease is measured in terms of expense for any modifications
required (unless absorbed by NASA), compatibility with schedules of other
activities which involve these facilities, the amount of coordination required
with other agencies during the operational periods, and the immediate access-

ibility of the resulting data to the participating agencies.

All of the existing sites under consideration (see Section 6.0, First
Quarterly Report) are equipped with millimeter-wave receivers which are
used in radio astronomy. Since these facilities use interchangeable rf
heads to change frequency of operation, it is very reasonable to assume
that new rf heads, specifically designed for propagation data collection,

can be supplied to these facilities. If these existing facilities are to be
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equipped with transmitters, some serious equipment difficulties can arise.
The University of Texas facility, for example, does not use a Cassegrain
antenna and, to eliminate long waveguide runs, the transmitter would have
to be mounted near the focal point of the parabolic dish. A new transmitter

and antenna feed support structure would also have to be installed.

Another very important reason for wanting to use satellite transmitters
is that less coordination is required during the data collection operation.
These facilities can receive test waveforms transmitted from the satellite
with little or no coordination with GSFC except to obtain satellite ephemeris
data and to plan the data collection schedules. Several stations can make
measurements simultaneously without interfering with one another. When
ground transmitters are used, coordination is much more difficult, the main
reason being that a closed loop is required to confirm that the transmitted
signal is being properly received. A closed loop would require that each
ground facility be equipped to receive a beacon signal or a telemetry signal

from the satellite which indicates that the transmit beam is properly pointed.

One objection to the down-link has been the high prime power require-
ments of the space transmitter. However, a good receiver local oscillator,
especially one that is locked to a stable source, consumes almost as much
power and, since it must be on longer than a space transmitter in order to
accommodate each ground station individually, it is questionable whether

the satellite receiver really provides much advantage in prime power.

One of the prime areas of interest in the propagation experiments is
to define the lateral coherence function which was discussed in Section 4. 1.
This function is two-dimensional in that it describes the maximum useful
antenna aperture and the maximum useful integration time of a space-earth

channel. It is desirable in the initial experiments to determine at least some
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of the points along the spatial axis (points along the frequency axis can be
inferred from the amplitude fading spectral density function). These points
are determined from measurements using multiple receiving apertures on
the ground and therefore,these measurements can only be made with a down-

link.

An essential input to the experiment is sky temperature measurements
which give a measure of total atmospheric absorption. The most meaningful
measurements are made with ground radiometers which use antennas
equivalent in size to those being used for the space-earth link. It is very
difficult to share an antenna with a CW signal transmitter and a radiometric
receiver. Use of two antennas is out of the question because of expense
involved. The frequency of operation of the radiometer would have to be
displaced from that of the transmitter by a substantial amount in order to

preserve the sensitivity of the radiometer.

When up-links are used, the participating agencies do not have immediate

access to the raw data which is being collected. There is a certain delay in

obtaining this information which prevents the station operators from evaluating
their performance in real time and taking corrective action. It appears
certain that in addition to satisfying NASA's requirements, these agencies
would want to make specific measurements or data recordings which fulfill
some special requirement of their own (antenna pattern measurements is a
prime example). When up-links are used, they do not have any of these

liberties.

All of these negative features about up-links tend to discourage or
prevent other agencies from participating in the propagation program. The
absence of their participation means the loss of valuable data points. In

addition to losing important weather models, their absence also means
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degradation in the elevation profille if a synchronous satellite is used.

On the positive side there are some significant features of the up-link
which are worth discussing., First of all, as will be apparent in Section 5.1,
satellite receivers are simpler and easier to design. Inherent in the design
is improved reliability and significantly lower power consumption especially
in the case of the 16 Gc and 35 Gc receivers. One area of increased
reliability is in signal acquisition because the ground transmitter and
receiver local oscillator can now be stabilized with a crystal frequency
source, A satellite transmitter could not be stabilized because of the
prohibitive amounts of power required especially when considering the ATS

satellites.

Even though the positive points for use of up-links are discussed

briefly it does not mean that they aren;t important. An early space-earth
experiment has to depend completely on present technology and a satellite
receiver design is considerably closer to meeting longevity and environ-
mental requirements than the present satellite transmitter design. The main
question to be answered is: Does the cost of an up-link experiment merit

the propagation data it produces? This question can only be answered at
such time when a specific satellite has been declared available and actual
commitments have been received from the participating agencies who have

usable ground terminals.
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4.3 Design of Communication and Propagation Experiment for Synchronous
and Low Altitude Manned Spacecraft

With the establishment of the NASA Apollo Applications Program (AAP)
(formerly known as AES, Apollo Extension System)and the Air Force Manned
Orbiting Laboratory (MOL) Program, it was considered appropriate to
include as much experiment de sign information as possible in these reports.
This section is therefore a preliminary discussion of millimeter-wave (EHF)
communication experiment design for synchronous and low earth-orbiting
manned spacecraft. Since the information contained in the First and Second
Quarterly Reports covers most of the design elements for unmanned
synchronous satellites, the emphasis in this section will be on low satellite
altitudes between 100 and 300 nautical miles. Design philosophy for experi-
ments using low altitude manned spacecraft is discussed. The potential of
millimeter-waves in future manned spacecraft communication data links is

reviewed,

Orbital analysis for low altitude spacecraft is given including some
estimates of communication time per orbital pass and average communication

time per day in a long duration mission (30 to 45 days).

Effects of atmosphere on millimeter-wave propagation in the 60 Gc
oxygen absorption band (50 to 70Gc) is reviewed and a signal level analysis

is given for 60 Gc experimental links between spacecraft and aircraft.
This section on manned spacecraft experiments is concluded with a

recommended work statement for additional study which was not included in

the scope of the present effort,
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4.3.1 Design Philosophy for Experiments Using Low Altitude Manned
Spacecraft

The design of experiments using low altitude manned spacecraft
would be based on the assumption that propagation experiments using aircraft

and medium to synchronous altitude unmanned or manned satellites have

already been performed during preceding phases of the program. As
explained in the First and Second Quarterly Reports and in Section 4.1 of

this report, these preceding experiments would provide basic propagation
data, under highly controlled measurement conditions. This accurate
knowledge of significant atmospheric influences on power density, modulation
method, and receiver performance would permit valid conclusions to be
reached as to the utility of this region of the spectrum. Finally, the preceding
experiments would generate statistics relating to channel reliability as a
function of time and zenith angle under a representative series of meteor-

logical conditions.

Low orbiting spacecraft are not ideal vehicles for basic propagation
experiments. They are just too close to earth to permit reasonable time for
gathering quantitative data by any one aircraft or ground station. Multiple
aircraft and ground stations are expensive especially since the spacecraft
is traveling at high angular rates relative to the other terminal. Low
orbiting spacecraft do, however, offer payload capacities which often surpass
that which is available at higher altitudes. Furthermore, the availability of
man in a low orbiting spacecraft is of inestimable value in determining the
operational potential of millimeter-wave communications, to support future
manned spacecraft missions. The experiments with low orbiting spacecraft
would be communication experiments demonstrating actual modulation
methods expected to be employed in future systems. They would, in effect,
verify the system performance inferred from the basic propagation data

gathered during previous phases of the millimeter-wave communicé.tion/
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propagation program.

The experiment design must include careful consideration of the
orbital and payload constraints placed by the specific spacecraft and its crew.
When a manned spacecraft experiment is planned, special attention must be
given to the crew's capability to perform in the environment, the amount of
crew time available for experiments, justification for the devotion of this time
to a millimeter-wave communication experiment rather than other experi-
ments, evaluation of functions in the experiment which requires participation

of the crew, and evaluation of the degree of automation in the experiment.

The designs must be such that the success of the experiment will not
depend completely upon the success of other experiments which are also
being performed with the low altitude space platform. Neither should the
design be dependent upon adding components, such as a complex antenna
system, the operation of which would in itself constitute an experiment.
Since the experiment should run for as long as possible and should include
measurements made under a multitude of conditions at many different path
angles, the proper use of the spacecraft must be determined from a cost-
effectiveness viewpoint. One of the basic ground rules, to be observed in
pPlanning such an experimental program, is that the experiment hardware
consist of proven designs and techniques with emphasis on reliable perfor-

mance and simplicity of design.

4.3.2 The Potential of Millimeter-Waves in Manned Spacecraft Systems

Present aerospace communication links are using densely populated
frequency bands, particularly the VHF and UHF bands, which are already
crowded with non-communication-type emitters. This means that important
communication channels can be highly susceptible to interference or jamming

of either an intentional or unintentional nature. Bandwidths available at
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SHF for communication purposes are limited by FCC, interference, and other
considerations. The resulting available frequency bandwidths are inadequate

to handle the steadily increasing data required of aerospace information links.

Spacecraft weight and power is at a precious premium as is room

on space vehicles for antennas. The combination of radiated power and

antenna gain is an important consideration in the performance of a satellite
communication link. The ideal objective would be to be able to reduce the
required radiated power from the vehicle and increase the antenna gain with-
out increasing the size of the antenna. Finally, it is highly desirable to be
able to construct an aerospace communication link with a high degree of
privacy. This feature insures that the link information is available only to
the intended receiver and should further reduce the possibility of intentional

jamming,

All of these problems and requirements indicate that portions of
the millimeter band, initially the 30-100 Gc frequency region, should receive

consideration for use as the carrier in aerospace communication links.

Present operational equipments which are radiating power at
fundamental frequencies in the millimeter band are comparatively few. Most
of these EHF emitters are limited to low radiated power levels and trans-
mission paths along the earth. As a result of these characteristics and
well confined antenna sidelobes, radiated EHF power at angles other than
along the éarth's surface is very small. In addition, any radiated EHF
power along the earth's surface is subject to comparatively high attenuation
due to atmospheric losses. Consequently, there is currently little
possibility of interference to EHF aerospace links from fundamental EHF
emitters, either accidental or intentional. Another possible source of

interfering EHF signals lies in the harmonics of high power C-band and
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X-band radars. These harmonic signal levels can be of sizeable magnitudes
and the antennas from which they are radiated are quite often pointed skyward.
In general, however, the signal density in the EHF band is several orders of
magnitude less than the signal density in the present SHF communication

links.

The available rf bandwidths in the millimmeter band are at least one
order of magnitude greater than available SHF bandwidths. A 15 percent
bandwidth at 94 Gc is about 14,000 mc wide; this is as wide as the entire
combined VHF, UHV and SHF bands presently in use. A 15 percent band-
width at X-band is about 1400 mc wide theoretically, but this 1400 mc band-
width is further reduced by FCC regulations and other constraints. Since
these constraints do not apply in the EHF band, improvements in available
bandwidth greater than one order of magnitude can be theoretically obtained.
This increase in available bandwidth is necessary if future aerospace
communication links are to handle the steadily increasing quantities of
information which must be transmitted from space vehicles, particularly if
they are manned and they are performing low altitude missions. The only
area of uncertainty which impedes the immediate use of EHF aerospace
communication links is the subject of the propagation characteristics at

EHF.

If the transmitter portion of an aerospace communication link is
contained in a spacecraft, then the distribution of the product of radiated
power and antenna gain is an important factor in the design of the communi-
cation link. As an example, assume that an aerospace communication link
were performing satisfactorily at a frequency of 9400 mc with 10 watts of
radiated rf power and a two-foot diameter paraboloid antenna. Neglecting
atmospheric attenuation for a moment, the same link performance,

assuming identical receiving terminal characteristics, could be obtained
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at a frequency of 94 Gc with the same two-foot dish by using only 100
milliwatts of radiated rf power. Considering that tube conversion efficien-
cies might typically be 10 percent, the X-band system would require 100
watts of satellite power while the EHF system would require one watt of
satellite power. The savings of almost 100 watts of primary power in only
one instance is an important consideration when the scarcity of spacecraft

power is considered.

Another advantage that is obtained by operating aerospace communi-
cation links at EHF is the aspect of transmission privacy. This advantage is
due primarily to EHF atmospheric attenuation characteristics and the narrow
antenna beamwidths obtainable at EHF., These two factors also help to reduce
any possible interference or RFI from other EHF signals. For a given size
antenna, the half power beamwidth is inversely proportional to the operating
frequency. Thus, an antenna operating at 94 Gc would have 1/10th the
beamwidth of the same size antenna operating in X-band. The privacy of
transmission which is obtainable due to atmospheric attenuation character-
istics is particularly noticeable in the 60 Gc frequency band. In this
frequency band, transmissions from a satellite to an aircraft at 45, 000 feet
would not be received by a ground station because of the large additional

attenuation due to the intervening atmosphere below the aircraft.

Thus, there are many possible operational advantages to be
obtained from aerospace communication links at EHF. However, the EHF
band has not received anywhere near the attention that the SHF band has
received and, consequently, the EHF band got a late start and has been
developing at a much slower pace than the SHF band. However, various
Government agencies are now encouraging the development of the EHF
state-of-the-art and considerable information and capability is being

developed.
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4.3.3 Experimental Ground and Airborne Facilities

Unfortunately, space-earth links for low orbiting spacecraft are
limited in experimental communications time. Additionally, since milli-
meter-wave communications are seriously degraded by the propagation
medium near the horizon, communications time is further limited. Typical
low altitude space-earth communications are restricted to short intervals
(2-10 minutes) at each site during each orbital pass, nevertheless, these

millimeter-wave channels are attractive for certain system applications.

The advantages of aircraft as terminals in aerospace communica-
tions have been recognized. They fly above a large portion of the sensible
atmosphere and therefore provide a space-air communications channel which
is essentially free of both water vapor and oxygen absorption. Because of
their freedom from propagation effects and the altitude of the airborne
terminal, these communication links offer a considerable increase in reliable
communication time per orbital pass over that for space-earth channels.

In addition, the transportability of the aircraft allows one to take advantage
of certain orbits, not available to ground stations, where real-time

transmission from spacecraft sensors is necessary.

For potential operational systems, both ground terminals and
airborne terminals have their place in millimeter-wave aerospace communi-
cations. Thus, the geometry of the space-earth and the space-air experi-
mental links must resemble as closely as possible the geometry of those

links expected to have the greatest variety of future applications.

Table 4-1 gives a typical mission outline for the manned earth-
orbital phase of the APOLLO Applications Program recently defined by
Dr. George Mueller, Associate Administrator for Manned Space Flight,

This mission outline gives the orbits and mission times which are
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predominant and is representative of the total experimental activity in which

the spacecraft crew will be involved.

Table 4-2 lists four existing millimeter-wave facilities which
are possible candidates for experimental ground terminals. Detailed
characteristics of these facilities were given in Section 6 of the First
Quarterly Report. Their geographic distribution provides an excellent
cross-section of meteorological variables. Unfortunately, the AFCRL and
Lincoln Laboratory facilities are positioned too far North for effective
collection of propagation data with the low altitude 28-1/20 inclined orbits.
New facilities at locations such as Hawaii, Ascension and Puerto Rico would
be most helpful. An orbital analysis is given in Section 4.3.4. From this
one can visualize the effects that orbital inclination, orbital altitude and
minimum operational horizon can have upon data collection time. The
orbital parameters of the spacecraft and the latitude of the ground terminal
would be an important consideration in the final cost trade-offs that must

be formed.

An area of chief concern in the airborne equipment is its emplace-
ment in the aircraft. Figure 4-5 illustrates one approach which may be
applicable to a U-2 aircraft. The millimeter-wave transmitter or receiver
is placed forward of the cockpit. With the fixed elevation axis oriented
parallel to the longitudinal axis of the aircraft, the permissible elevation
coverage ranges from -10 degrees to 190 degrees. The transverse axis
is perpendicular to the elevation axis. Transverse coverage of 60 degrees
appears to be adequate. With a proper flight path, a spacecraft can be
kept within view of the aircraft antenna from horizon to horizon. The
sketches in Figure 4-6 show orientation of aircraft with respect to space-

craft orbit.
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Figure 4-6 Orientation of Aircraft with Respect to Spacecraft Orbit
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TABLE 4-2
APPLICABLE EXISTING MILLIMETER EXPERIMENTAL FACILITIES

Facility Location Features 1

Aerospace Corporation Southern California Clear Weather Model
Latitude 34 degrees 10 to 20 inches annual
Longitude, 118 degrees rainfall 2
Altitude 0 to 300 Good Orbital Coverage

University of Texas Central Texas Constant Weather Model
Latitude 30 degrees 20 t o 40 inches annual
Longitude 98 degrees rainfall

Altitude 1000' to 2000' | Good Orbital Coverage

AFCRL and Lincoln Labs| Eastern Massachusetts] Variable Weather Model

Latitude 42 degrees 40 to 60 inches annual

Longitude 71 degrees rainfall

Altitude 100" to 500' Questionable Orbital
Coverage2

Weather Model which is likely to occur during 45-day mission

With respect to 28-1/2° inclinations or less.

4.3.4 Orbital Analysis for Low Altitude Satellites

Orbital periods and velocities for satellites at altitudes below 600
nautical miles are given in Figure 4-7. Period and velocity for a circular

orbit are approximated by:

3/
(R + h) 2

Period = T 3390

Minutes (4-1)

250
Velocity = V = ®+H 1/  nautical miles/second (4-2)

where
= [Earth's radius = 3440 nautical miles

h = satellite altitude in nautical miles
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Figure 4-7 Orbital Period and Velocity Versus Altitude For
Low Orbiting Spacecraft
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Figures 4-8 and 4-9 give slant range and coverage radius versus
altitude and elevation angle for low orbiting spacecraft. Slant range and
coverage radius are defined in the geometry shown in Figure 4-10 and are

calculated using:

6/

: 2
Slant Range = R = Ll (R+ h) nautical miles (4-3)

s cos Y
. 0/ 3 . 4-4
Coverage Radius = R(9 = 60 x 2 nautical miles ( )

h 1 Rs
where: - S

0/2 = sin RTh cos v degrees (4-5)

S

¥ = elevation angle

Communications time during an orbital pass between a satellite
and a given point on the Earth is the most important parameter when
evaluating candidate satellites as platforms for space-earth propagation and
communication experiments. Figure 4-11 gives communications time
versus elevation angle during an overhead pass of polar satellites at
altitudes of 100, 200 and 300 nautical miles. A correction can be made for
Earth's rotation for satellites at inclinations other than 90 degrees. The
correction factor is:

T
= + -
n 1 1200 cosl (4-6)

where

T is in minutes and ¢ = inclination angle (£ =0 degrees for an
equatorial orbit launched from West to East). The factor n is given in

Figure 4-12.
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The most useful curves for estimating communication time for a
given orbital pass are shown in Figures 4-13 through 4-15. These curves
are approximations for communications time as a function of: minimum
horizon in terms of elevation angle; and minimum Earth's surface range
between the ground terminal and the orbital plane which is the same para-
meter as Earth's coverage radius. These curves show the profound effects
that the minimum operating horizon has on the usefulness of low orbiting
spacecraft. Calculations for all of these curves are based on the assumption

that the ground terminal latitude is somewhat less than the orbit inclination.

Finally, a three dimensional sketch is given in Figure 4-16 which
shows the shape of the ground station latitude-orbital inclination function for
average total communication time for a 24 hour day in a 30 to 45 day mission.
Communication time is maximum at points 1 and 2 in Figure 4-16 when the
ground station is on the Equator and the satellite orbit is equatorial or when
the ground station is on a Pole and the satellite orbit is polar. Table 4-3
gives the average communications time in hours per day for the above two
cases at satellite altitudes of 100, 200 and 300 n miles. The communications
time for an equatorial station and a polar orbit is also given. Communication

time is zero for values of ground station latitude.

L =2 4+(%2max
where:
6/2 is maximum when y = zero degrees.

4.3.5 Effects of Atmosphere on Propagation in Oxygen Absorption
Band

Using the Ré.ytheon computer program described in Appendix II

of the First Quarterly Report and the Case 6 weather model described in
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TABLE 4-3

AVERAGE COMMUNICATION TIME FOR LOW ALTITUDE SPACECRAFT

Communication Time - hours
) h=100 n.mi. [ h=200n mi, |h = 300 n mi,.
Orbital Inclination, o o .
Station Location 6/2 =13.5 6/, =19.0 6/, = 23.1
(1) 0° ; equatorial 1.8 2.5 3.1
(2) 90° ; equatorial 2.2 .4 0.6
(3) 90° ; polar 1.9 2.5 3.1

Section 3, also, of the First Quarterly Report, the transmission factor of

the atmosphere versus zenith anglehas been calculated for several
frequencies assuming a ground terminal location at sea level. The

resultant curves for 35, 50, 70 and 94 Gc are shown in Figures 4-17

through 4-20, Figures 4-21 through 4-24, showing apparent sky temperature

versus zenith angle, were also generated from the computer program

1
Transmission Factor

Atmospheric attenuation (db) = 10 log

Note that the weather model used is not the "Revised Weather Model'" upon
which atmospheric attenuation and sky temperature curves in Section 3,
First Quarterly Report, and Section 5, Second Quarterly, are based., These
curves are presented here because the values for the extremities of the

oxygen absorption band (50 Gc and 70Gc) were not computed for the revised

model.

Satellite-to-aircraft experimental communication links are essential
when considering the use of frequencies near the 60 Ge oxygen absorption

band. The opacity of the atmosphere to frequencies near 60 Ge has been
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pretty well predicted. Meeks and Lilley(25éive detailed estimates of the
limitations that oxygen places on millimeter-wave propagation. Straiton
and Tolbert(4”have also investigated this band using a 500-foot absorption
cell at the University of Texas. What is not completely predictable is the
bandwidth that the propagation medium will support and the minimum useful
horizon as a function of altitude. Experimental verification with satellite-
aircraft communication links using special signal waveforms are required.
Opacity per unit bandwidth can vary from 2 db per megacycle near a
resonant frequency such as 60.44 Gc, to 0 db per megacycle near the
adjacent window at 60,8 Gc. This can have drastic effects on the phase and

amplitude characteristics of the broadband communication channel.

In designing space-air experimental links operating in the 60 Gc¢
oxygen absorption band, the required system analysis will be a bit different.
From Meeks and Lilley vertical and horizont al attenuation, due to oxygen is
shown in Figures 4-25 and 4-26. Zenith opacity versus altitude, and opacity
versus zenith angle,have been derived for 60. 8 Gc and is shown in Figures

4-27 and 4-28.

With a Computer Program, such as the one described in Appendix

Il of the First Quarterly, it can be used to provide parametric data describing

the opacity of the absorption band as a function of frequency, altitude and
zenith angle. From this,data change in opacity per unit bandwidth over the
frequency band can be determined,to permit proper choice of experiment

frequencies.
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4.3.6 Signal Analysis for 60. 8 Gc Experimental Links

In this section typical 60.8 Gc experimental links using synchronous
stationary satellites and 200 nautical mile satellites are discussed. Because
of free space attenuation, there is a penalty in signal-to-noise density when
using synchronous satellites instead of those at low altitudes. However, the

advantage of stationary satellites in the initial experiments is more important.

Tables 4-4 and 4-5 indicate the capacity of space-air down links
which can realistically be achieved within the NASA Apollo Applications
Program time schedules. Table 4-4 gives signal-to-noise densities
referenced to 90 degrees elevation and zero propagation loss. Table 4-5
gives signal margin estimates for various practical configurations. The
propagation losses were taken from Figure 4-28 in Section 4. 3. 5. Relative

free space attenuation for 200 n mile satellites is given in Figure 4-29 and
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TABLE 4-4
SIGNAL ANALYSIS FOR 60.8 G¢ SPACE TO AIR LINKS WITH

SYNCHRONOUS AND 200 n mi. ALTITUDE SATELLITES

Synchronous| 200 n. mile

Free Space Attenuation (A = 5 mm, y = 900) - db 219.4 179.6

Propagation Loss (zero loss as reference) -db 0.0 0.0

Satellite Antenna Gain (24" for 0.6° beam) - db 48.7 48.7

Aircraft Antenna Gain (30" for 0. 5° beam) - db 50.7 50.7
Noise Density

(T_ = 30,000°K, NF = 20 db, T ,= 0°) - dbw/cps -184.0 -184.0

Transmitter Power (10 w) - dbw 10.0 10.0

Polarization Loss - db 0.3 3.0

Received Signal Power (unmodulated carrier) - dbw| -110.3 -73.2

Signal-to~Noise Density ( unmodulated carrier) - 73.7 100. 8

db/cps
(modulated carrier) - db/cps 71.9 98.0
(each sideband) - db/cps 65.9 92.0

SIGNAL MARGINS FOR TYPICAL SPACE TO AIR EXPERIMENTAL LINKS AT 60. 8 Gc

TABLE 4-5

Reference Signal-to-Noise Density,
¥ = 90° - db/cps

(Unmodulated Carrier)
Relative Free Space Attenuation - db
Propagation Loss (Opacity) - db
Actual Signal-to-Noise Density - db/cps

Minimum Signal-to-Noise Density - db/cps

(Phase lock receiver unlock)

Signal Margin-db

(Unmodulated Carrier)

Aircraft Altitude = 80,000 Aircraft Altitude =40, 000 '
v~ =5 y=10°

Synchronous | h = 200 n, mi, Synchronous h = 200 n. mi.
73.7 100, 8 73.7 100. 8
-1.2 -13.3 - 1.1 -11.4
11.0 11.0 26.6 26.6
61.5 76.5 46.0 62.8
27.0 27.0 27.0 27.0
34,5 49.5 19.0 35.8
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relative free space attenuation for synchronous satellites was taken from
Figure 5-7, Second Quarterly Report., The minimum allowable signal-to-
noise density, that is, the signal-to-noise density level at which aphase-lock

receiver unlocks, was discussed in Section 5, 3.7 of the Second Quarterly.

For amplitude modulated test waveforms the modulated carrier
signal margin would be 1. 8 db less than those shown in Table 4-5. The
signal-to-noise density levels for each of two sidebands would be 7. 8 db less
than those shown in Table 4-5. The AM modulated carrier could be scanned
across a segment of the oxygen absorption band to determine attenuation and
coherence bandwidth as a function of frequency. As the scan rate increases
the minimum allowable signal-to-noise density increases (see Section 6. 2).
There is a serious problem with frequency scan using low altitude spacecraft.
The short communications time per pass and the high rate of change of
elevation,force the scan rate to be very high thus requiring high signal-to-noise
densities for holding receiver phase lock. The scanning signal has to be
phased-tracked by the receiver local oscillator in order that relative phase

measurements among the spectral components can be made.

4,3.7 Mission Profiles

A primary result of the experiment design study using manned
orbiting spacecraft should be to define one or more typical 45-day mission
profiles which can be considered. The profiles should describe the specifics
of each millimeter experiment, the data to be obtained, the anticipated
results, the application of the data, and the manner in which each experiment

relates to other experiments and to the capabilities of unmanned satellites.

The program estimates performed should reference these candidate
profiles in terms of costs. Each mission profile should be a schedule of

events in the manned spacecraft mission which are pertinent to the
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millimeter communication experiments. Careful and thorough planning
and scheduling of mission profiles would insure most efficient use of valuable
experiment time. Results of these profiles would allow reasonably accurate

costing of the complete communication experiment.

The mission profiles may vary with the spacecraft launching date
because of the influence of the prevailing weather at the ground station at
that time of the year. For each mission, predetermined alternatives should
include orbital coverage from ground sites and aircraft flight paths for each
pass of the 45-day mission. Daily countdown procedures for calibration and
check-out of each ground site and each aircraft should be defined and scheduled.
Each aircraft flight plan, which may encompass experiment data collection on
three or more consecutive orbital passes, should be defined in terms type of
aircraft, landing points, direction, altitude and speed, all related in time to
the spacecraft orbit. All flights required for ground site and aircraft cali-
bration and checkout, plus any flights required for aircraft-ground propaga-

tion data collection should be included.

A very important section of the mission profile would be the
specification of the spacecraft crew's participation during the 45-day mission.
Their duties may include calibration and maintenance checks, aid to acquisi-
tion, millimeter antenna steering and observation of signal displays. The
duties of the personnel required to operate and maintain the ground and

airborne experimental equipment should also be specified.

4.3.8 Work Statement for Extension of Experiment Design Study

This work statement is recommended as an extension of the current
millimeter-wave communication/propagation program to include design of
more extensive experiments with manned and unmanned spacecraft which have

larger payload capacities than those specified in the present study.
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The experiment design already accomplished shall be modified to include:

a. Communication experiments as well as propagation
experiments.
b. Definition of channel characteristics in the water vapor and

oxygen absorption bands.

¢. Implementation of more sophisticated waveforms for direct
measurement of certain channel characteristics.

d. Variable separation receiving apertures to measure angular
extent of atmospheric inhomogeneities.

e. Determination of limits of refraction on the pointing of high
gain spacecraft and ground antennas.

f. Spacecraft radiometers for survey of background temperature
of the earth and its atmosphere.

g. Utilization of man in the spacecraft.

The use of spacecraft in low altitude earth-orbits,

i, Utilization of spacecraft-aircraft experiment links.
j. Data processing, evaluation and storage aboard the space-
craft,

Task 1. Define Study Objectives

Prepare a supplement to ' Program Definition Plan for Millimeter
Communication Propagation Program,' Raytheon Report No. FR-4-498B,
29 January 1965, which describes the additional tasks to be performed,
describes their relationships with the tasks already accomplished, and

provides the schedule of tasks and sub-tasks.

Task 2. Define Basic Measurements

The results of the present study shall be modified to include

definition of channel characteristics in the water vapor (18 to 22 Gc¢) and
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oxygen absorption (50 to 70 Gc) bands, in addition to the windows at 16, 35

and 94 Gc which have already been considered. In addition to a simple carrier
modulated by sinusoidal signals (5 Kc, 5 Mc, 50 Mc), waveforms shall be
evaluated such as: multiple carrier (0.3 to 1.0 Gc¢ spacing) for examination

of channel coherent bandwidth in all bands; pulse amplitude modulation which
yields indication of communication system performance for the PAM, PWM,
PPM, PAM/AM, PWM/AM and PPM/AM family of modulation systems; and
pulse amplitude modulation/frequency modulation which yields indication of
communication system performance for the PAM/FM, PWM/FM, PCM/FM,
PPM/FM and FM/FM family of modulation systems. In other words, commu-

nication experiments as well as propagation experiments shall be defined.

The present study results associated with variable separation,
variable beamwidth receiving apertures shall be modified to include more
sophisticated measurement of angular extent of atmospheric inhomogeneities,
by measuring amplitude and phase correlation among the received signals.

This experimental setup shall also be used to determine the limits of refraction
on pointing high gain spacecraft and ground antennas. In those experiments
which use spacecraft millimeter-wave receivers, consideration shall be given
to multiple purpose utilization such as radiometer functions to survey the
background temperature of the earth and its atmosphere and to observe other

bodies in the solar system.

The descriptive bibliography being prepared under the present study

shall be updated at the end of this study extension.

Task 3. Evaluation and Selection of Experiments

Using the approach developed in the present study, experiments

shall be formulated which will make the basic measurements prescribed in
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Task 2. The candidate satellite evaluation shall be expanded to include low
earth-orbiting (100-300 n mile altitude, 28.5-90 degree inclination) space-
craft as well as medium altitude (6000 n miles) and synchronous altitude
spacecraft. Curves shall be generated showing viewing time as a function of
spacecraft altitude, inclination, horizon limitations and mission time for
space-air and space-earth links. A detailed signal level analysis for each
candidate satellite shall be performed showing signal attenuation and fading
margin estimates as a function of elevation angle, weather model, modula-

tion scheme, etc.

New measurement waveforms which were introduced in Task 2 of
the study extension plus those measurement waveforms already evaluated in
the present study, but were rejected on the basis of payload limitations, shall
be considered for implementation in the new experiment design. A signal
flow analysis shall be provided which traces the frequency components of the
test waveform through the entire experimental links. The experiments shall
be designed for various payload capacities up to 200 pounds, 3 cubic feet,

300 watts prime power and 2 foot apertures.

The use of man shall be clearly defined by comparing the manned
experiment with the comparable unmanned experiment in terms of specific
experimental results, operational and equipment reliability, savings in weight

and prime power, etc.

Spacecraft integration and operational problems shall be defined
including those associated with the conduct of multiple experiments with the
same equipment, concurrent experiments which compete for operator

attention, and experiments by a non-specialist member of the crew.
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Typical mission profiles based on the experiments selected shall be
developed to specify key test procedures and measurement techniques. The
mission profiles shall include orbital coverage from ground sites and aircraft
aircraft flight plans, ground and airborne operational procedures, astronauts’

duties, and available data collection time.

Task 4. Ground and Airborne Facilities Evaluation

The evaluation of the ground facilities considered in the present study
(Aerospace, University of Texas, AFCRL, Lincoln and GSFC) shall be up-
dated and expanded during the course of the study extension. Additional
facilities such as those located at University of Ohio; NAA, Columbus, Ohio;
DRTE, Ottawa, Canada; NOL, Corona, California, shall be included.
Important geographic locations such as Hawaii and Ascension at which milli-
meter facilities presently do not exist shall be considered in the overall ground
facilities evaluation. Various types of aircraft shall be evaluated in terms

of performance as an airborne terminal for the space-air experiments.

Task 5. Equipment Design

The equipment design already accomplished in the present study
shall be used as a base from which to show the hardware implementation of
the new experiments selected in Task 3. The equipment design for the new
experiments shall be carried out to the level specified in "Program Definition
Plan for Millimeter Communication Propagation Program' for Task 5 of
the present study. Since the selected experiments will, of necessity, require

component development time and costs.

Task 6. Data Processing and Evaluation

The data processing and evaluation requirements already specified
in the present study will be applied to the new experiments. Additional
methods of data processing required by the new measurement waveforms

shall be added.
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Section 5
EQUIPMENT DESIGN

This section completes the equipment design phase of the study. Most

of the results of this taskwere given in the first and second quarterly reports.

5.1 Multiple Frequency Receiver Configuration for Small Payloads

As previously mentioned in Section 4.1, the First and Second Quarterly
Reports recommend propagation experiments in which the down-link would
be utilized at 35 Gc and 16 Ge. A down-link could not be recommended for
a 94 Gc experiment because of the risk in attempting to develop a space-
worthy transmitter within a two year time period. This particular experi-
ment configuration has been studied to the extent that anticipated carrier
signal-to-noise density ratios have been calculated for the available sites
assuming certain synchronous satellite positions. These carrier signal-
to-noise density ratios, which were listed in Table 5-1 of the Second Quart-
erly Report and are again listed here in Table 5-1, range from 27 db to 49

db when amplitude modulation is used.

5.1.1 Improvement in Signal-to-Noise Margins

The modulated carrier signal-to-noise density ration is a prime con-
cern since it is this energy that is translated and phase-locked to the stable
reference frequency in the phase-locked receiver. The ability of the phase -
locked receiver to hold lock is defined in Section 5. 3, Second Quarterly Re-
port as the modulated carrier signal-to-noise density ratio at which the re-
ceiver unlocks. This signal-to-noise density ratio at unlock is a function
of both the post-detection noise bandwidth and the combined frequency drift
of the received signal and the first local oscillator frequency. If the assum p-
tion is made that the maximum frequency drift due to the combined frequency

stabilities of the receiver carrier and local oscillator is 1 part per 109 per
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TABLE 5-1
RECEIVER SIGNAL-TO-NOISE DENSITY IN db FOR
MODULATED AND UNMODULATED CARRIES IN
SYNCHRONOUS SATELLITE EXPERMENT LINKS

Satellite Position (2)

Frequency (Gce) Station PA-45 SA-30 PP-145 | SP-165

35 Aerospace (10) 5/33/27(3) 41/39/33 | 31/38/32
35 WSMR (10) 15/38/32 22/39/33
35 U. of Texas (16) |24/43/37 #10/41/35 29/44/38]10/41/35
35 Rosman (10) 15/38/32

35 GSFC (15) 33/42/36 R3/41/35 | 7/38/32

35 AFCRL (29) 35/47/41 R6/46/40

35 Lincoln (28) 35/48/42 [R6/47/41

35 Haystack (120) 35/51/45 R6/50/44

16 Aerospace (10) 5/39/33 41/43/37 | 31/42/36
16 WSMR (10) 15/43/37 22/43/37
16 U. of Texas (16) | 24/47/41 [10/46/40 [29/48/42|10/45/39
16 Rosman (10) 15/43/37

16 GSFC (15) 33/46/40 [23/45/39 | 7/44/38

16 AFCRL (29) 35/51/45 [26/50/44

16 Lincoln (28) 35/52/46 [26/51/45

16 Haystack (120) 35/55/49 [26/54/48

94 Aerospace (15) 5/21/19 41/42/40] 31/40/38
94 - GSFC (15) 33/44/42 23/41/39 | 7/35/33

Code: (1) Number in parenthesis represents antenna diameter.

(2)

(3)

PA-45
SA-30
PP-145
SP-165

Primary Atlantic Position = 45° W Lg.
Secondary Atlantic Position = 30° W Lg,
Primary Pacific Position = 145° w Lg.
Secondary Pacific Position = 165° W Lg.

Ground Terminal Elevation Angle/Unmodulated Carrier

S/Nc(db)/ Modulated Carrier s/Nc (db)
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0.1 second, then curve No. 2 of Figure 5-1 defines a modulated carrier
signal-to-noise density of 27 db as the point of receiver phase unlock. As
seen in Table 5-1, the margin or difference between the anticipated modul-
ated carrier signal-to-noise density ratio and the 27 db ratio at receiver

phase-unlock ranges from 0 db to 22 db.

The ability to determine amplitude variations due to the transmission
medium is also a function of a signal to noise density ratio. The output of
the amplitude processor is a function of the sideband signal to noise density
ratio, and with present circuit parameters, a sideband signal to noise den-
sity ratio of 45 db results in an output signal to peak noise ratio of the am-

plitude processor of 20 db.

It is evident from the above, that every attempt must be made to in-
crease signal to noise density ratios in the signal receivers. An increase
in signal to noise density ratio may be attained through alteration of system
parameters in the present configurations or through changes in experiment

configurations.

One possible alternate experiment would consist of only an up-link with
all three receivers located in the satellite. This approach would increase
all signal to noise density ratios at 35 Gc¢ in Table 5-1 by 24 db due to the
fact that a Litton 50 watt klystron may be utilized in a ground station. The
16 Gc propagation experiment with this approach would experience a 27 db
increase in signal to noise density ratio because a good 100 watt tube is a-
vailable. The signal-to-noise densities in Table 5-1, are based on steer-
able satellite antennas which cover the United States from synchronous alti~
tude. To simplify the payload a fixed horn which looks at the whole Earth
could replace the steerable horn at an expense of 9 db in sig-nal-to—noise

density margin.
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Figure 5-1. Post Detection Noise Bandwidth vs Signal-to-Noise Density
when Carrier Phase-Lock Loop Unlocks
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5.1.2 Satellite Receiver Design

A block diagram of the system in the satellite, capable of receiving any
one of the three propagation frequencies is shown as Figure 5-2. This
system consists of three separate mixers connected to a common receiver
I-F amplifier. This satellite package will require 33 watts of prime power
if the 66 mcs reference is available at a 40 milliwatt drive level. If this
reference is not available, a crystal controlled oscillator must be added to
the satellite receiver, thus increasing the total prime power required to 48
watts. Table 5-2 lists the prime power required for one, two and three
channel receivers with and without an oven controlled crystal frequency

standard.

TABLE 5-2
PRIME POWER REQUIREMENTS FOR SPACECRAFT RECEIVERS

Channel Frequency Prime Power (watts)
(Gc) With Xtal. Std. Without Xtal. Std.
16 22 8
16 and 35 44 29
16, 35 and 94 48 33

Another approach considered was a crystal video receiver shown as
Figure 5-3 which has a very high reliability factor, but an unacceptable
degradation in post detection signal to noise ratio, thus no further evalua-
tion is being considered at this time.

It must be kept in mind that many questions remain unanswered and
some will only be solved through breadboard evaluation. Some of the ques-
tions to be answered are listed as follows:

1. Is a drift of 1 part per 109 per 0.1 second with a crystal oscillator

physically realizable?

2. Does the pound type of discriminator exhibit better short term
frequency stability than a multiplied frequency standard?

3. What is the present state of the art noise figure for a 94 Gc
harmonic mixer ?
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Section 6
SIGNAL ANALYSIS

This section on phase-lock receivers supersedes Section 5. 3. 7 of the

Second Quarterly Report.

6.1 Signal Acquisition and Tracking With Phase-Lock Receivers

A spacecraft or ground based receiving system must have a frequency
acquisition and tracking capability due to the fact that very small predetection
bandwidths are required. The receiver circuit parameters for such a capa-
bility are derived from the anticipated signal-to-noise density ratio and the
frequency offset, or the difference in frequency of the actual received signal
and the frequency for which zero error signal is required for the receiver

voltage controlled oscillator.

The discussion which follows shows the superiority of the bandpass
limiter over automatic gain control when optimizing the dynamic range of a
phase tracking loop. It is also shown that, for the frequency offsets anticip-
ated, signal acquisition cannot be accomplished without sweeping the output
frequency of the voltage controlled oscillator. Finally maximum frequency
Sweep rate versus loop noise bandwidth is given for various valves of

signal-to-noise density.

6.1.1 Signal-to-Noise Density

The spacecraft and ground receiver configurations are dictated by
many parameters. A convenient expression in which some of these para-
meters are included is the signal-to-noise density ratio. This ratio is the
received signal power to the noise power per cycle bandwidth at the receiver
input and is derived from Equations 5-48 and 5-50 of the Second Quarterly

Report.
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P G _G_ g

P .

R__'T T R Lp (6-1)
N - T

c KTO(FLSI) + K A
PT = transmitter power
GT = gain of transmitting antenna
GR = gain of receiving antenna
g = free space attenuation
Lp = polarization and atmospheric losses

-23 o .

K = Boltzmann's constant (1.38 x 10 watt-seconds/ Kelvin)
T = ambient temperature of the system

o
F = receiver noise figure
LL = system losses prior to mixer

s
Ta = effective antenna temperature

The anticipated signal-to-noise density ratios for the propagation experiments,
are in the order of 40 to 60 db, which is equivalent to a 0 to 20 db signal-to-

noise ratio in a 10 Kc bandwidth.

6.1.2 Maximmm Frequency Offset

The acquisition or pull-in-range of the phase-lock receiver is a
second parameter to be considered. The receiver, as seen in Figure 6-1,
anticipates a frequency at the receiver input, which results in zero error at
the phase detector output. This frequency is the resting frequency of the
system. Any frequency other than the resting frequency, will require
movement of the voltage controlled crystal oscillator and will be known as a

frequency displacement. The maximum frequency offset is expressed by the

following:
f = K K f f K f -
D i "ro'ro t fa *t Ky Myt Kgfpg (6-2)
where:
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. 5
KT = uncertainty of transmitted frequency (1 part in 10" to
6
1 part in 10 )
fT = transmitter frequency
KLO: uncertainty of receiver first local oscillator (1 part in

6
105 to 1 part in 10 )

= first local oscillator frequency

LO

fd = doppler frequency due to relative motion of receiver and
transmitter

KV = uncertainty of voltage controlled crystal oscillator
(1 part in 105)

M = multiplication factor required to generate second local
oscillator frequency starting with voltage controlled crystal
oscillator frequency

fVCO: frequency of voltage controlled crystal oscillator

KS = uncertainty of frequency standard (1 part in 106)

st = frequency for the frequency standard

The doppler frequency term may be eliminated from the above
expression, since it is insignificant when a vehicle is in synchronous
stationary orbit. The frequency standard term may also be eliminated,
since it's contribution is less than 0. 1%. Frequency displacement of
950 Kc for the worst case to 95 Kc in the best case, may be anticipated for
a system operating at 35 Gc. Since one does not have prior knowledge of
whether the displacement frequency is above or below the system resting
frequency, the system must have a pull-in-range equal to twice the dis-

placement frequency.

6-4
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6.1.3 Dynamic Range

Many papers and articles have been written describing phase-locked
loops and their parameters. One parameter of interest, the dynamic range

of a phase tracking loop may be optimized through the application of a band-

(42)

pass limiter prior to the phase detector. Comparison of a phase-locked-

limiter is shown in Figure 6-2. The loop had the following parameters:
Filter = optimum, proportional plus integral
Noise -to-signal ratio at match point = 1
Predetection bandwidth = 1 mc
Loop noise bandwidth = 5 cps
Phase displacement = 1 radian

As clearly evident from Figure 6-2, the limiter configuration approaches

the optimum system, thus justifying a limiter prior to phase detection.

6.1.4 Frequency Pull-in Range

The pull-in-range of a phase-lock-loop is theoretically infinite
for the case of a perfect integrating filter. For the case of the second order

system incorporating an imperfect filter, the pull-in-range is finite and

may be expressed as;(43)
w < 8 '/zBN 4BN + 1 radians (6-3)
P 3 3¢ second
where:
BN = loop noise bandwidth
¢ = inverse time constant of the optimum filter.
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Assuming a loop noise bandwidth of 100 cycles; a predetection
bandwidth of 10 Kc; and velocity loop gains of 105 and 106, curves of .
pull-in-range versus signal-to-noise density ratio are plotted in Figure 6-3.
The signal power in this case is to be considered as only the power in the
carrier. It is evident from Figure 6-3, that a maximum pull-in-range of
10 Kc may be achieved for a signal-to-noise density ratio of 40 db and a
loop gain of 107. This pull-in-range does not meet the acquisition require-
ment which is twice the frequency displacement of 1. 8 Mc for the worst
case. Figure 6-4 is another curve of maximum pull-in-range vs. signal-to-
noise density with a system designed at 30 db signal-to-noise density ratio
at the match point. One must conclude, that the acquisition requirement

cannot be met with the system in Figure 6-1.

6.1.5 Frequency Sweeping

Thus, we must consider the frequency swept phase lock receiver
configuration as shown in block diagram form in Figure 6-5. This approach
has been widely used and is essentially sweeping the voltage controlled
oscillator at a fixed rate until the signal is acquired at which time the sweep

voltage is deactivated.

44
Frazier and Page( )have derived a formula, from experimental
results, to determine the rate at which a VCO may be swept for a 0.9

probability of acquisition and is expressed as:

2
™ a w
S(cps/sec) = (E -2.200) (0.90—) no (6-4)
o
2n (14 6)
where:
o = rms phase jitter
o
a = suppression factor of limiter
6 = overshoot

6-7
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a
o]

1}

w natural frequency of the loop at match point.

no

With Equation 6-4, the maximum sweep rate versus loop noise
bandwidth for various signal to noise densities were plotted in Figure 6-6.
These curves were plotted assuming the plotted points to also be the system
match or design point; that is, the system is designed for the minimum
anticipated signal-to-noise density ratio of 36 db. This ratio satisfies the
requirements for unmodulated carrier acquisition in the majority of experi-
ment links listed in Table 5-1. Then, from Figure 6-6, the maximum sweep
rate is 0, 14Mc per second and our loop noise bandwidth is to be 2 Kc. When
sweeping at this rate there is a 0. 9 probability of acquiring the signal in the
first sweep. However, the final systermn design will include 2 margin, thus
sweeping at lower rates, thus increasing the probability of acquisition. If,
however, a swept rate of Q, 10Mc/sec is used, the maximum time required
to acquire, under the worst condition, would be 18 seconds assuming that
1. 8 Mc had to be swept. On the other hand, if the minimum anticipated
signal-to-noise density ratio were 40 db, the VCO could be swept at
1 Mc/sec, thus acquiring the signal in 2 seconds. The maximum frequency
displacement can be as large as 1. 8 Mc which will produce a steady state

phase error. This error is expressed as:

d
¢ = —¢ (6-5)
where:
K = Velocity loop gain constant
“q = displacement frequency in radians per second

suppression factor of limiter at which the loop is matched.
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The loop will stay in its locked state as long as the phase error due
to all sources is less than — radians, It is concluded from Equation

7
6-5 that a loop gain of 10 to 108 is required for this system.
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Section 7
DATA PROCESSING AND EVALUATION

The design of a millimeter propagation experiment is not complete
without describing the data processing and evaluation required to define

the parameters of the channel through the propagating medium.

Existing computer facilities are equipped to handle the data processing
required for the propagation data collection program. Special-computer
programs, which are based on the mathematics presented in this section,
can be generated to provide estimates of the channel parameters. Little
computation is required to infer, from these basic parameters, the
effects of propagation on commonly used waveforms and modulation systems
because this has already been done for similar effects at lower frequencies.
Information on the estimation of system performance with these basic
parameters is given in Section 4. 2 of the First Quarterly Report and in the

open literature such as Reference 45 through 49,

The first part of this section discusses the general concept of processing
and evaluating millimeter propagation data taken from space-earth
channels. This is followed by definitions of the channel parameters which
apply to any communication channel and then the mathematics for computing
these parameters from basic phase and amplitude data is given. Finally
the application of these mathematical methods to millimeter channels is

the conclusion of this section.

7.1 General Concept

The actual processing of the collected data can be performed by off-the-
shelf equipment. The important consideration is that when the experiment

hardware is purchased, the data processing equipment must be specified
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in detail so that its procurement or lease becomes an integral part of the
experiment design package. Labor required for data processing and analysis

must be specified in the program plan.

Data to be used in the final description of the propagating medium will

come from three principal sources. They are:

a) Spacecraft position data from a satellite tracking facility.
b) Amplitude and phase data either telemetered from spacecraft
receivers or extracted from ground and airborne receivers.

c) Meteorological and radiometric data from correlative sensors,

Proper emphasis must be placed upon correlative sensors and correlative
data processing, It does little good to determine atmospheric absorption,
atmospheric noise, selective frequency fading and channel capacity unless
we accurately classify the meteorological conditions existing during each
measurement period and determine the probability of recurrence of each
class of conditions during the annual cycle, Good correlative data will allow
prediction of propagation effects for many future ground terminal locations

from data taken with a few ground terminals,

Three phases of data processing will be considered for the experiments.

They are:

a) Real-time on-site space, ground, and airborne data recording
and processing which will be useful for operational monitoring
and last minute changes in test schedule during the spacecraft
pass or measurement interval,

b) Non-real time on-site data processing which is necessary for
short range test schedule planning for the subsequent space-
craft passes or measurement intervals,

c) Non-real time off-site data processing performed by existing
contractor and/or government computer facilities required

to develop the final data in tabular and graphical form,
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The taped analog data from the satellite and from all the ground
facilities would be converted to digital form and processed at a central data
processing facility. The relationship of this facility with the other facilities
involved in the propagation data collection program is illustrated in

Figure 7-1.

FEach ground facility receiver should be equipped with identical signal
processors and analog tape recorders to minimize data processing expense.
Each ground receiver would share its rf head with a radiometer in order to
make sensitive sky temperature measurements using the same antenna beam.
Short term and long term variations of antenna azimuth and elevation angle
are recorded on tape along with the signal amplitude, relative sideband phase
and radiometric temperature. It should also be noted that the boresight
installation for each of the participating ground facilities should be equipped
for calibration and checkout purposes, with a spacecraft simulator which
consists of the appropriate transmitters and/or receivers which function like

those aboard the satellite.

Real-time analog strip line recoder presentations of the same data which
is being recorded on magnetic tape will be made at each site for calibration,
checkout and operational monitoring; and to provide the cooperating agencies
with immediate access to the raw data. A coarse evaluation on the analog
presentations can be made at the site for the purposes of planning follow-on

experiments,.

An extensive quantity of data will result from the experimental program,
and, of course, it is not necessary to statistically process all of the data
collected. However, it is necessary to look for the occurrence of unusual
propagation effects to insure that the data which is processed adequately
represents the statistical model, When the magnetic tape arrives at the
central processing facility, an analog presentation, similar to that made

at the side, is made from the tape playback in order to select those samples
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of data which are to be processed. As more and more samples are
processed it is expected that evaluation of these results will indicate
improvements to be made in the computer program, and choose new

samples for computer processing and old samples for rerun.

The spacecraft position data taken by the tracking facility in the satellite
control station is programmed into the computer in order to cancel out free
space attenuation from the total path losses of the space-earth link.
Calibration runs, just prior to the actual propagation tests, are performed
with the spacecraft simulator so that the proper receiver and transmitter
constants can be used at the central processing facility. During the test
itself, operational performance is monitored by recording certain data on
one or more channels of the magnetic tape. Pre-test calibration and
operational monitoring is also performed on the spacecraft equipment and

telemetered to the satellite control station with the raw propagation data.

7.2 Definition of Channel Parameters

(50)

A pictorial display, provided by Green'~ , which shows the functions
of a single channel,to be defined,as well as their interrelationships, is
given in Figure 7-2. A second pictorial display showing the functional
relationships between two spatial channels is given in Figure 7-3. An

explanation of each of the single and dual channel functions now follows,

7.2.1 The Two-Dimensional Correlation Function

The Two-Dimensional Correlation Function for a single spatial
channel is an important quantity characterizing the millimeter channel.
This function is measured by those experimentors who measure fading and
fading statistics and it has direct application to the design of communication
systems using frequency diversity. The importance of this function is

. 0 (51), . (52)
discussed by Green , Gallagher and Price and Creen .
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The following quantities may be determined directly fromthe two-
dimensional correlation function, R (Af, At): the coherence time and the
coherence bandwidth of the channel; the duration of fé.des; the Echo-Corre-
lation Function, R (At); and the Spaced-Frequency Correlation Function,

R (Af). Moreover, the Scattering Function, o (T, f), which is the two-
dimensional Fourier Transform of R (Af, A7), provides direct information

regarding doppler and multipath spreading by the channel.

That R (Af, Ar) ando (T, f) are important is demonstrated by the
fact that ¢ (r, f) can be used to determine the probability of error in deciding
which of m waveforms has been transmitted through the channel (53, 54, 55),
The function, o (T, f) also arises in the consideration of optimum analog

(56)

communication systems and bounds on their performance

For the purposes of investigating the physical significance of the
various quantities associated with R (Af, Ar) and o (7, f), the observations

(50) (51

of Green and Gallager )are summarized,

The time-frequency-spread channels under consideration have
the property that a transmitted sinusoid is received as a narrow-band

random process. That is, a transmitted signal of the form:

8 (T) = Re{ ej'ZﬂfT} (7-1)
is received as

s (r) = Re {: (£, T) ej‘z"f"'} , (7-2)

r r

where ;r (f,7) is the complex envelope of the received signal; since
sr('r) is narrow-band, the envelope of the received signal is ‘Er (f,‘r)l where

~sr(f, T) may be interpreted as a randomly-varying transfer function,
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The Two-Dimensional Correlation Function is defined in terms of

complex envelopes by:
Af ~ Af

R{Af, AT) = ZE{ gr*(f-—z— » T) Sr (f + —‘2"—' s T + AT)}, (7-3)

where "E" signifies taking the expected value of the bracketed quantity and

"#' indicates complex conjugate.

(49)

In order to interpret R (Af, AT), we closely follow Callager and

consider R (o, AT) and R (Af, o) separately,

Referring to Equation 7-3, R (o, AT) is seen to be the auto-
correlation function of the complex envelope of the channel response to an
input sinusoid of frequency f cps. This autocorrelation function,

R(AT) = R (o, AT), is called the "Echo-Correlation Function ;' it provides

coherence time and fading duration information.

The coherence time of the channel, 7 » is loosely defined as the
c
range in AT over which R (AT) is non-zero. Very often T is taken to be
c

the solution to-

R(TC) = 1/2 R (o). (7-4)

The fact that R (At) approaches zero largely results from fading

in the channel. 7+ is related, therefore, to the duration of fades.
c

Again referring to Equation 7-3 » R (Af, o) is seen to be the cross-

correlation function of the complex envelope of the channel response to a

sinusoid at f - af » ¢ps. with the complex envelope of the response to a
sinusoid at f 4 Az—f . The cross correlation function, R (Af) = R (Af, o),

is called the "Spaced-Frequency Correlation Function;" it provides coherence

bandwidth information.
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The coherence bandwidth, Fc’ of the channel is loosely defined to
to be the range in Af over which R (Af) is non-zero. If frequency diversity
modulation schemes are used to transmit information, the F is a measure

c

of how far apart the separate channels must be in order to receive

uncorrelated signals on each.

If a signal of bandwidth W, centered around f, is transmitted and W
is such that R (W, o) ~ R (o, o), then the received signal will be the same
as the transmitted signal except for an overall amplitude and phase that
change over a period of time which is on the order of ‘TC. Conversely, if
R (W, o) =o0, the amplitude and phase of different frequency components of
the input signal will be changed relative to each other, and the received
waveform will no longer bear a simple resemblance to the transmitted

waveform.

If R(Af, A 1) is unimodal, the T is approximately the reciprocal
c
of the doppler spreading and F is approximately the reciprocal of the time
c

spreading of the channel.

7.2.2 The Scattering Function

The channel scattering function, which is the two-dimensional
Fourier transform of the correlation function, is directly applicable to
communication system design. The scattering function, ¢ ( 7, f) has a
convenient physical interpretation; it represents the power received from a

scintillating scatterer at delay 7 and doppler shift f,

Consider the two functions, o (f) :fo- (7, f)dtand o (1) =
fcr (T, f) df, separately. ¢ (f) is called the 'Echo Power Spectrum' and

o (t) is called the '""Power Impulse Response."

The scattering function represents the total power received from
all scatters producing a doppler shift of f cps. The doppler spread of the

channel, B, is loosely defined to be the range in f over which ¢ (f) is non-zero.
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As previously mentioned, if ¢ (1, f)and R (Af, A 7) are well behaved, then
1,
B~y 'rc.
The functions, o (T) represents the total power received from all

scatterers at a delay 7. The time spread of the channel, L, is loosely

defined to be the range in 7 over which o (7) is non-zero. Ifo (T, f) and
1

I AL

R (Af, A7) arc well bekaved, than I, ~ /F .
c

The Echo-Correlation Function, R (A T), is the Fourier Transform
of the Echo Power Spectrum, o (f), and the Spaced-Frequency Correlation

Function R ( Af), is the Fourier Transform of the Power Impulse Response,
o (t).

7.2.3 The Modified Two-Dimensional Correlation Function

A frequently measured quantity, which has no simple relation to
R ( Af, AT), is a modified two dimensional correlation function. The
modified function, which is denoted by ﬁ (Af, AT), is defined in terms of
the channel envelope response by:

A .
R (Af, AT) = 2E {] 5, -5, T)]

Af
sr (f + > T +A'rl}.
(7-5)

A

Since R (Af, AT) depends on the envelope of the channel response,

rather than the complex envelope, it is insensitive to phase fluctuations, and
A
therefore provides less information than R (Af, AT). R (Af, AT) is used
in practice because of the relative ease in measuring it compared to
A
measuring R (Af, A7), (by 14). Associated with R (Af, AT)is a complete
A\ A PaN ”~\ -
set of quantities; R (Af), R(AT), 7, F, & (7, f), etc., each of which is
c c

defined

» in a parallel fashion, to its counterpart associated with R (Af, AT).

7.2.4 The Two-Dimensional Spatial Correlation Function

The two-dimensional correlation function for two parallel spatial

channels receiving the same signal will provide the communication system
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designer with information on spatial diversity, limitations of atmosphere on

antenna size, and the physical structure of the propagating medium. The
correlation function is obtained by receiving a single sinusoid at two receivers

separated by a distance (Ad) and correlating them with time shift (A 7).

The two-dimensional spatial correlation function, R (Ad, A7) which

is shown in Figure 7-3 is defined by:

T CRNTEE URTATPE R eyy
T 2 r 2
which is analogous to the two-dimensional correlation function given in

Equation (7-3).

The coherence aperture, Dc’ of a channel is loosely defined as
the range in Ad over whichR (Ad) is non-zero. If very large antennas are
to be used in a communication system.DC is an important measure of the
maximum diameter aperture which can be efficiently employed. In situations
where space diversity schemes are being considered as a means of enhancing
channel reliability, Dc is a measure of antenna separation required in order
to receive uncorrelated signals. When Ad is zero and AT is variable, the
two-dimensional spatial correlation function becomes the echo correlation
function for a single channel. In Figure 7-3, DC is thought of in seconds,
that is, the coherence distance (in units of length) divided by the speed of

propagation,

The cross coherence time, Tp’ is loosely defined as the range in
AT over which R (A T) is non-zero. R (Tp) is often referred to as
1/2 R (o). If R(AT)is maximum at some point other than AT = 0, it
indicates that the relative structure of the atmosphere has remained

essentially unchanged as it moves a certain distance (Ad).

7.2.5 The Spatial Spectral Density Function

The dual channel spectral density function, ¢ (v, w), which is the

7-12
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two~-dimensional Fourier Transform of the spatial correlation function,

is useful in understanding the physical structure of the atmosphere.

The spatial frequency spread, FD, is loosely defined to be the
range in wavefront frequency W over which ¢ (w) is non-zero. If o (w, v)
and R (Ad, A7) are well behaved, then FD: l/Dc. In other words, the
larger the coherence aperture, the narrower the spatial spectrum of the
wavefront. When DC is expressed in seconds, FD becomes cycles per

second.

The lateral velocity, Vs is loosely defined as the velocity of the
propagating medium across a distance (Ad); and it is the range of the
lateral velocity v over which o (v) is non-zero. If ¢ (w, v) and R (Ad, AT)
are well behaved, then V = l/Tp (in cycles per second). When multiplied by

Ad in units of length, V is expressed in linear velocity dimensions.

7.2.6 The Modified Two-Dimensional Spatial Correlation Function

In simpler experiments, a modified spatial correlation function,

R (Ad, AT), is usually measured. It is defined in terms of the envelopes of

} (7-7)

The function R (Ad, AT ) provides no information about decorrelation

the received signals by:

-~ Ad
spld-= 7

~ Ad
Sl‘(d+ ——E-, T+ AT)

A
R{(Ad, AT) = ZE{
A

effects due to phase fluctuations because of the use of only amplitude

envelopes rather than complex envelopes.

7.3 Measurement of Channel Parameters

A variety of correlation functions and spectral densities are useful
in the characterization of the millimeter communication channel. The
quantities listed in Tables 7-1 and 7-2, can be used to determine the funda-

mental limitations imposed by the channel upon commonly used modulation

schemes. The purpose of this section is to review the mathematics for estimating
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correlation functions and spectral densities.

The correlation functions and spectral densities associated with the
millimeter communication channel are defined by ensemble averages.
However, an ensemble of received waveforms will never be available in
practice and, therefore, these functions cannot be measured experimentally
by ensemble averaging. Instead, time averages on individually received
waveforms must be used. The interchange of ensemble and time averages
is justified provided the ensemble is ergodic, in which case infinite time

averages are entirely equivalent to ensemble averages.

A further compromise must be made in practice. Because of long-
term equipment instabilities, the satellite passing over the horizon, etc.,
coherent waveform observations for indefinitely long periods cannot be made
so that only finite, rather than infinite, time averages are feasible. The
result of using finite duration observations is that an estimate of the
correlation function or spectral density is obtained rather than the actual
function. The estimate is subject to statistical variations and it is upon

these variations that we focus our attention.

The estimation of correlation functions and spectral densities on the
basis of finite duration observations has been treated in detail by Blackman

(57) (58) (59) (60)

and Tukey , Bello , Hannan , Watts and Bendat(él). Use of

these studies has been made in writing this section,

When considering the estimation of the correlation function, R (7), and
the spectral density, S(f), of a random process, the estimate should be
made on the basis of an observed sample function of the process of duration

T seconds. Let RT (T) and ST (f) be the estimates of R (7) and S(f),

respectively. Let x(t), - —2—5 t= + —'—g‘— , be the observed sample function
and considers (7) to be real. The extension to complex x (t) and the

extension to the estimation of cross-correlation functions and cross-spectral

densities are straightforward.
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As an application of the model described in (Figure 7-4) to the estimation
of a particular correlation function associated with the millimeter channel,
consider the measurement of the Modified Echo-Correlation Function,

ﬁ (AT). Inthis case, x (t) corresponds to the envelope function
lgr (£, t)| . An estimate, ,P\\ (AT), is made of IQ (A7) on the basis of

T

an observation of ;r (f, t) | for T seconds. Estimates of the coherence

time of the cha'nnel, 'rc, are obtained from R (AT).

It should be noted that at this point we are assuming a noise free
observation of the received process. This is done so that the measurement
error arising solely because of the use of a finite duration sample can be

determined. The effects of observation noise can be introduced subsequently.

7. 3.1 Estimation of Correlation Functions

The correlation function to be estimated is given by the infinite

time average:

+ T/2
R(T):lim—% x(t-%—)x(t+21—)dt (7-8)
T-— o -T/Z

On the basis of this definition, we shall develop a reasonable definition for

the estimate, RT (7).

A typical observed sample, and its shifted versions, are shown in
Figures la, 1b and lc; the length of the observation interval for each is T

seconds. The product to be averaged, x (t - —g— ) x (t + _z_ }, is shown

in Figure 7-4d,Because of the shifts, the observation interval for the product
has decreasedto T - I 'rl seconds, and this is the total length of averaging
time which can be employed in the estimation of R (7). It is clear, for

this reason, that as 7 increases a longer observation interval, T, is
required to obtain a good estimate of R (7). Moreover, for fixed T,

it is not possible to estimate R (7 ) accurately for 7 greater than some

7-17
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fraction of T. The definition of the estimate, RT (1), which we shall

employ is: 1 (T-|7])
2

_ 1 T T
RT()“T-W X(t-z—)x(t+z~—)dt (7-9)
S1(T-|7])
2

This definition is reasonable because it makes full use of the available data
and it reduces to the definition of R (7 ) when the observation interval becomes
arbitrarily large; that is, lim RT (T7)= R(T).

T—.oo

To investigate the error, er (1) = RT (T) - R(T), consider

an ensemble of observed processes, say, x (1) (t), x (@) (t),.... each of
duration T. Corresponding to each observed Process is an estimate and
an error, e(lT) (t), e (TZ) (7), .... These quantities are indicated in
Figure 7-5. It is easily demonstrat;ad that the expectation (ensemble
average) of RT (1), has a zero average value. A measure of the spread

of the error is provided by the error variance, defined by:

chZ (t)=E [eTZ('r)]

E[RT(T)-R(T)]Z

E [RZT( T )]- R%( 1) (7-10)

Under the assumption that x (t) is a sample function from a Gaussian
o . . . . 2 .
process, 1t is possible to derive an expression for o T (7) in terms of

R (7). This is done in Appendix I, and the result is:

7-19
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+(T -|7])
2 2
o (1) == | (T-lrl-lD[R* @+ R@-7) -2m 4]du
[T-IT-I] x
-(T -|7]) (7-11)
where mx = E (x) is the expected value of x.

The assumption that x (t) is a sample function from a Gaussian
process, essential for the derivation of Equation 7-11 needs to be discussed
because in some instances the observed processes associated with the
millimeter channel will be definitely non-Gaussian. As pointed out by
Blackman and Tukey 7 » the equation for the error variance obtained with
the Gaussian assumption usually gives a good approximation to the error
variance even for processes which are not closely Gaussian., Bendat(61),
in discussing the measurement of correlation functions associated with
Rayleigh processes, also indicates that the equation obtained with the
Gaussian assumption is a good approximation. Thus, Equation 7-11 has
practical value although it may not be strictly correct for some of the
signals to be processed in the millimeter propagation experiment. The
quantitative results to be derived below must be taken as approximations

to what may actually occur in practice; the approximations will generally

be good.

The error variance constitutes one measure of the quality of

the estimate of R (7). A second measure, which may be interpreted as a
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signal-to-noise power ratio out of the correlator is defined by:

2

R%(r) _ &2 ()l - 1]
T =171

SNRT(T) =
“r (7) 2 4
(T-|T|-|u|)[R (u)+R(u-'r)-2mx]du

-(T =|71) (7-12)

SNRT (T) is a useful measure in practice because it can be easily related

to a level of confidence for estimates based on an arbitrary sample function,
(1) (2)
T (7)), RT (7)) ...

. . . . . . 2
form a Gaussian distribution with mean, R(7 ), and variance, o‘T (7). Then

In order to do this we assume that the Estimates R

68% of the estimates fall within one standard deviation, ch (1), of the mean,
R (T ); or 95% fall within two standard deviations, 20 T (7), of the mean,
R (7); etc., It follows that if we want 6 8% of the estimates to fall within

p % of the mean, then we require:
e (T) = 0.01pR(T); (7-13)

of, if we want 95% to fall within p of the mean, then we require

2 9 (7) = 0.01 pR(T). (7-14)

Equations 7-13 and 7-14 define a level of confidence of 68% and 95%,
respectively, associated with p. Other confidence levels could be similarly
defined. From these equations, it can be seen that a confidence level of

68% corresponds to a required signal -to-noise ratio of

2
100
SNR, (7) = <—) (7-15)

P
or a confidence level of 959 to:

2
100
SNR () = 4 (—p—) (7-16)
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From Equations 7-15 and 7-16, it is seen that as we decrease p, requiring a
more accurate estimate, or increase the desired level of confidence, we

required a larger SNRT (7).

In examining SNRT(T ) for a typical correlation function which
might occur in practice, assume that R (7 ) has the form:
-7l

T
C

R{(7}) = R{o)e (7-17)

where 'TC is the correlation time of the process. Since lim R (t)= O,

T—» ©©
the process has a zero-mean; non-zero mean processes could be treated

in a parallel fashion. For this correlation function, o‘T2 (T ) becomes:

2(ry = R (o) (—T—)—1+ 2e‘2(7l)

(Z)’

(7-18)

4
for7 >0, and T = T-1715> o0,

and the signal-to-noise ratio, SNRT (7), becomes:

(7))
e C Y
SNR_ (T) = - ’ IATC
' (X -1+2e-2(-'r1)+[2(1)‘1][2(—T')+1]
'Tc C TC Te
2 T
z({— z e 'Z(TC) (7-19)

fort>0, and T = T- 7> o0




SPACE AND INFORMATION SYSTEMS DIVISION—————

The dimensionless parameters:

T - L (7-20)
Te
and
T = Tl are now introduced and the signal-to-the -noise

C

ratio now becomes:

2T -
2e T(T - 'r)z

= 2T (o= o= 7.,.-2) -2r
2T -14 2e 274 PT-ZT-q-zr .
(7-21)

SNR,-I,-'(T) =

A limiting case of interest exists when T >>7; that is, when the sample
duration (measured in correlation times) is much greater than the time shift

(also measured in correlation times).
In this limiting case SNR?T- (T ) becomes approximately:
= =27 , -27

SNR_, () = Te — = =

1L+ (27 +1)e

T

€ (7-22)
z

where k is a constant, 1 =z = 2,

Equation 7-21 can be employed to obtain a useful set of curves., To
illustrate this, we shall consider an example for which the approximate
expression, Equation 7-22, is valid. Figure 7-6 shows plots of SNR? (;)

- 2 - 3 —
for T =10 ,T=10,andT=2.7x103andk=2.

Example 1.

The curve is used in the following way. Suppose we wish to measure
R (7 ), over a range of values of 7 equal to two correlation times, with a
68% level of confidence that all measured values are within 20% of their true
value. From Equation 7-15 this is equivalent to specifying the following

constraint on SNRE (7):
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Figure 7-6 Plot of SNR,f ()
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SNR_ (7) =25 for0=71=2

From Figure 7-6, we find that the observation time must be equal to, or

3
greater than, 2.7 x 10 correlation times.

Example 2.

Another way in which the curves may be used is illustrated by the
following. Suppose that a sample function having a duration of 103 correlation
times is available and that we desire to estimate R (7) with a 95% level of
confidence that the measured values are within 209% of the true values. From
Equation 7-16 we require SNRT("I—") = 100. The range of T for which this

constraint is satisfied can be determined from Figure 7-6to be 0=7 =< 0.8.

The processing of a single sample is now extended to include the

processing of multiple records and the processing of sampled records.

Estimation of Correlation Functions with Multiple Records

The expressions for sz (T) and SNR",IT(;), which are given by
Equations 7-11 and 7-12, apply to the estimation of R (7) on the basis of a single
observation of length T. In practice, however, more than one observation
will be made. We assume that these observations, denoted by R_k-,i,(;), is

r

given by the average

kr

RkT(’IT) = % Z Rf(l) (T) (7-23)
r r i=1

(1)

where RT (‘r—) is the estimate obtained from the i-th observation.

The error variance associated with R'kf fr) is given by:

1

o—krT (T) - Tr O’E‘ (T) (7_24)

2 -
where T (7)is given by Equation 7-11. The signal-to-noise ratio associated
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with Rk;[‘(T) is

SNka(T) = krSNR,f('r), (7-25)
where SNRT(T) is given by Equation 7-12.

Example 3.

In order to indicate how krenters into data-processing calculations,
we reexamine the estimation problem of Example 2. Suppose krsample
functions each of 103 correlation times duration are available and that we
desire to estimate R (7 ) with a 95% level of confidence that the measured
values are within 20% of the true value. Now suppose that we want to measure
R (7)) over a range of two correlation times. From Equation 7-16 we require

SNR.kr-f (T)=100. From Figure 7-6, it is found that SNerf(?) = kr

_ 00 ~ . . .
SNR‘E’ (T7), we need 190 — 12 records to achieve the desired confidence
Processing Sampled Records for the Estimation of Correlation
Functions

It is desirable to obtain expressions for the estimation of correlation
functions on the basis of sampled data, rather than continuous data because of
the expected use of digital computer processing. For this purpose, we
consider that the data available for the estimation of R (7 ) is x(kA) for
k =0, 1, ...., N. Ais the distance between samples and there are N + 1
samples of x (t) in the observation interval o<t < T, (This interval is

more convenient than - I =t=< —g— used in the continuous case.)

2
Estimation of R (7 ) is made at discrete points according to a slightly

modified and sampled-data version of Equation 7-9:

N- v

RN(V A) = —I\TTI—F/-I Z x[kA x (k-lvl)A] (7-26)
k=o

vA, where v is an integer, is the point on the correlation function where the

estimate is desired.

7-27
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2 .
The error variance, c (v ), and the signal-to-noise ration, SNRN(VA)

are given by sampled-data versions of Equations 7-12 and 7-13, respectively:

(N-1v1)
2 1 ol 2 .
-0y (VB) = W)Z Z (N=-1v lkl){ R (kA) +R[(k )A]
k = - (N=-|vl)
4
R[(k+v) A] -2 m } (7-27)
and ' '
2 2
_ R™(vA) [N - |v(]
SNR (vA) = M)
Z (N-lvl-l.k{){Rz (k A) + Rl:(k-v) A] R [(k+v) A] -2Mx4}
k =—(N-Iv])

(7-28)
As in the case of continuous processing, SNRN(vA) can be very useful in )

determining the amount of data required in order to obtain a given level of

confidence about the estimate. The sampling interval, A, or sampling rate,

1/A, now enters as an additional parameter.

For the typical correlation functions previously considered

(Equation 7-17) SNRN(VA) becomes:
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-2vA 2 =2vA
SN (va) = € Y (N-v) (N-v + 1) + (N-2v + 1)e v
Ry va) = 2 -2K
1-e
-2A(N- -2 -2vA 3 1
- 1-2e NV+1)+e va + ve Y [N-'Z- °f] (7-29)
( —ZA) 2
1-e
-1
N-v [ -ZvA]
- 1+e
2
- A 1 . .
where A = 7c* S° that N equals the number of samples in one correlation

time,

When N >> v, Equation 7-29 approximately satisfied:

_ “2vA [ -zz]

SNRN(VA):' Ne t1-e .
-2va 23\ -2v3 1 2v A\ fi-e 24
211+ + v]l-e -5 1+e
(7-30)
If Ais also small:
-2 VZ

o~ (NA) e -

SNRN(vA)_ oK (7-31)

1 +(2 va +1)e”

Comparison of Equation 7-31 with Equation 7-22 shows that as the sampling
rate increases, such that NZ_S = T and v A = ?, the performance of the

continuous and sampled-data processing are nearly equal.

It is of interest to compare SNRN (vA) and SNRT (T) as a function
of the sampling rate, -i— We assume that the total observation time and
the point on the correlation function to be estimated are the same for the two
methods of processing; i.e., NA = TandvA = 7. A degradation factor

due to finite sampling rates can be defined by:
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] SNRT (7)
_ = 7-32
Dz (7/A)2 10 1og,, SNR (V&) (7-32)
How much degradation occurs depends upon T

It has been observed that as Z-»o, the sampled-data processing and the
continuous data processing are equally satisfactory. Thus, lim D,’._.( 1/A) = o.
Ao
Assuming that T > >7, an expression for D_’—_( I/Z) can be obtained
by using Equations 7-22,7-30 and 7-32, along with the restrictions that

NZ= T and vA = 7.

A -24 27, | = =27 . -2A
D (1/A) = 10 log . A (te "7 ) (e ") +21e” (1-e°7)
(1-e'2A) {1+(2¥ +1) e'ZT}

(7-33)

Example 4,

The usefulness of Equation 7-33 will be deomonstrated by considering
a particular value of T; namely, T = o. In this case Equation 7-33reduces to:

. -2A
10 log, | & —+E

-2A
10 .. 28

D (1)
° (7-34)

L}

|
_ ]

L

where ctnhAis the hyperbolic cotangent of A A plot of Equation 7-34 ig
shown in Figure 7-7. It is seen that a sampling rate above two or three
samples per correlation time results in very little decrease in the degradation.

On the other hand, lower sampling rates result in a significant increase in

degradation.
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Summary for the Measurement of Correlation Functions

An estimate of a point on a correlation function is obtained by
implementing 7-9 and 7-23 in the case of continuous processing and
Equations 7-26 and 7-23 in the case of sampled-data processing. The
emplementations are shown schematically in Figures 7-8.
for the more general case of cross-correlation measurements based on a

single sample length T.

The procedure for determining the amount of data which is required

for a particular measurement is:

A
1) An approximate value for 7 , the coherence time of the
c v
channel must be chosen. If no prior information is available,
A
then a guess of T must be made. Subsequent to initial
c

measurements, the guess can be appropriately modified.

2) Specify the level of confidence desired for the experiment,
This, in turn, specifies the minimum allowable value for
SNRkT (7). (Assuming at least 3 samples per correlation
time are used, the signal-to-noise ratios for continuous
and sampled processing are nearly equal.)

3) Specify a value of 7, or a range of values of 7, for which
the estimate is desired, Use Figure 7-6 to determine k T,

the required amount of data.

7.3.2 The Measurement of Power Density Spectra

This discussion on the measurement of power density spectra
associated with the millimeter communication channel will be on the general
problem of spectral density measurement with the results being applicable

to the measurement of a particular spectral density listed in Table 7-~1.

The spectral density, S (f), of a random process is to be estimated

on the basis of an observed sample of the process of duration, T. Let

x(t), - —g‘— =t= 7T , be the observed sample function and ST(f) the estimate

of S(f). As in the case of the estimation of correlation functions, we shall

consider x(t) to be real.
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Figure 7-8 Implementation for Cross-correlation estimates based
on (a) continuous records (b) on sampled-~data records

Let X(f) be the Fourier transform of x(t) when it is assumed that

x(t) is zero outside the observation interval; that is

T/2
X = f x(n) T at (7-35)

-T/2

7-33
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The total power in the observed waveform is given by:

T/2
1 2
ptota.l TT fx (£) dt
-T/2
- —1T— f | X(f)|2 ar (7-36)

The second expression follows from Parseval's theorem. Let [PT(f)]be
- defined by:

P_(f) = . | X(f)|2 (7-37)

PT (f) is the power density associated with the observed waveform and is

frequently called the ""periodogram.' It can be easily demonstrated that

PT(f) is an asymptotically unbiased estimate of S(f); i.e., lim[E PT(f)jI= S(f).
T— ©

The use of PT (f) as an estimate of S(f) is intuitively plausible and somewhat

justified by the above observations. However, in spite of its apparent

usefulness, PT (f) is not a consistent estimate of S(f) because the error

variance, E [PT (f) - S(f)]z, does not approach zero as T becomes large.

In fact, PT(f) is a very poor estimate of S(f) since, for any T, the standard

deviation of the error is at least as large as the height of the spectrum at

the point of interest(éz,) that is El/za [PT(f) - S(f)]2$ = S(f).

It is possible to obtain a consistent estimate of a smoothed version of S(f).

The modified estimate is defined by:
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sp(f) = f PLf) W (i-f )af (7-38)

where W, (f) is called a window function and will be defined below.
i

It is easily seen that

[+ o}
14 [4 ’
E[ST(f)] =f S(£) W (f-f)af . (7-39)
- 00
. (60) . . g
and it can be shown that the error variance is satisfied
E |Ss_(f)-s()] = Sz(f) _Tm (7-40)
NGEETG) T |

where Tm is defined below.

A variety of window functions which have been used in practice
sin w x

are listed in Table 7-3; the function sinc x is defined by sinc x = —

The width of W _(f) is approximately equal to —-_rl and this quantity is
i
58 m
defined to be the resolution in cps( ) Windows Wz(f) and W3(f) are most

commonly used and are called hanning and hamming-windows, respectively.

From the definition of ST(f) and from Equation 7-40, it is observed
that the "width" of Wi(f) has a significant influence on the quality of ST(f)
as an estimate of S(f). If Wi(f) is an impulse, therefore having zero width,
then ST(f) = PT(f) and E[ST(f)]= S(f). At the opposite extreme, if
Wi(f) = constant, then E[ST(f)]OC R(o), which is obviously a very poor estimate
of 5(f). From the point of view of estimating S(f) with good resolution, it is
therefore desirable for Wi(f) to have a ""narrow'" pulse-like shape.
According to Equation 7-40, on the other hand, the rate at which the error
variance approaches zero as a function of T is inversely dependent on the
width of Wi(f). The choice of the width of Wi(f) is, therefore, based upon

a trade-off between resolution and accuracy.
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Blackman and Tukey(57) give four equations describing the
trade-off between resolution and accuracy as a function of the duration of
the observation. Associated with each equation is a level of confidence in
the estimate; an 80% level of confidence means, for example, that each
estimate has an 80% chance of having a specified accuracy. The equations
are:

80% Confidence Level

T _[17 + Tjﬁ‘f;d—)z + %] /(resolution) (7-41)

90% Confidence Level

1 + .__2_(&__.2 T %] /(rcsolution) (7-42)
T = 2 (spread)

96% Confidence Level
1 313

T =5 + ——
[2 (spread)2

+
Wl B

]/(resolution) (7-43)

98% Confidence Level

T zl:_l_ + 420 + 3] /(rcsolution) (7-44)
2 2 3
(spread)

where n is the number of records, each of length T'; T, the total duration
’
of the observation, satisfied T = n T . '"Spread'' relates to the accuracy and

is defined by:

P
100 + +
100 - P

spread = 10 log (db) (7-45)

where P+ and P_ define an error band around the true mean; the errors are
contained within +P+% and -P_% of the true mean. ¥ Equations 34a,b, ¢, and
d are plotted in Figures 7-9,a,b,c & d, respectively for the special

case of one record of length T. The use of the curves is illustrated by

Example 5.

*The units of T are seconds, of resolution are cycles-per-second, and
of spread are decibels.
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Example 5,

It is desired to have a 90% certainty that an estimate of the spectrum

at a given frequency lies within £0, 5 db.

(spread = 1 db.) of the true value.

The desired resolution is 0,1 cps. What is the minimum required duration

of a single observation? From Figure 7-<9b, the required duration is at least

2000 seconds., (A single record of this duration is not eaéily obtained in

practice, so that more than one record would be used. )
TABLE 7-3

WINDOW - LAG WINDOW PAIRS

W (fy=27T sinc2r f
o] m m

. 2
Wl(f) T, sinc 'rmf

w = i
2(f) Tm sinc ZTmf
L T i 2 f+1
t m sinc( L. +1)
+ sinc(2T f-l)]
m
W3(f) =1.08 7 sinc 27 f
m m
+ 0,467 [sinc(Z'r f 41
m m

+ sinc(27 f-1 ]
m

{1|‘7’|<'rrn

Wo(7') =
0|'r|>'rm
1--|-T—|- I-r|<'r

wir) { — m
0 171> 7
—Zl(l+cos ;—r%)|7|< ’Tm
0 I'r|>7'm

0.5440.46 cos — | ~r|< T
Tm m

0 |'r|>1'
m
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Relations Between ST(f) and RT(T)

Before discussing the processing of sampled-data records, it is
convenient to develop an alternate expression for ST(f). This can be done
by investigating the relationship between ST(f) and RT(T ). The processing

for sampled-data records follows easily from the alternate expression.

The periodogram, PT(f), and the estimate of the correlation-

function, (r), are shown in A ndix II to be related by:
ppe y

el
T - | T jernfT
pr  =f T R_(T)e

-T
T

_ T-l"'l R_(7)cos 2wfr d7T (7-46)

= f —g T
-T

T -] : .
It follows that — T RT(T) and PT(f) are a Fourier transform pair.

Based on this relation between PT(f) and RT('T ), a relation between ST(f)
and RT(T ) can be easily obtained. Let ST('T ) be the inverse Fourier transform

of ST(f). Then it is clear from Equation 7-38 that

Sp(r) = —L'—;'— Rp(T) W(r) (7-47)

where Wi(T) is the inverse transform of Wi(f), as given in Table 7-3 and is

called a lag window. Hence:
o0

_ j2rnfr

o0
:f _ELIF_I RL(T) Wi(T)eJZ“deT (7-48)
_oo
™m
=f bl (1) W 2wt d 7-4
- T RT T i('r) cos 2TfT T, (7-49)
m

where Tm is defined in Table 7-3.
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This relation provides an alternate method for implementing the estima -
tion of ST(f). Namely, we first estimate R(r), then use Equation 7-48
to obtain the estimate of S(f). Clearly, RT(T) is required only over the

range of 7 for which Wi('r) is non-zero; that is, for | T |< tme

An inverse relationship can also be given which determines RT(T) in terms
of ST(f). Of course, it is valid only for | -r| T Using inverse trans-

forms, we have, from Equation 7-48:

(s o]

Rylr) =W, (r) T_T—|7—| / 5.0 2™ ag for || <7y (7-50) \

-00

Processing of Sampled Records for the Estimation of Spectral

Densities

We now consider that the data available for the estimation of S(f)
is x(kA) for k=0,1,..., N. Ais the distance between samples and there

are N+ 1 samples of x(t) in the observation interval o=t=T.

For the purpose of processing sampled data, it is convenient to .

use a sampled-data version of Equation 7-48 for the estimation of S(f).

It is: Vm
N -| vl je2wivA
V= o-v
where RN(VA) is defined by Equation 7-52:

N

1
Ry(vA) = N_|v| Z x(kA) x [(k -|v|)A] (7-52)
k=0

RN(VA) is required for the range | v|< Vo (where tm = va.)

Summary for the Measurement of Spectral Densities

An estimate for a point on a spectral density is obtained by first

estimating R(r) then using either Equation 7-49 for continuous processing
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or Equation 7-51 for sampled-data processing. The implementations are

shown in Figures 7-]10,

The initial steps in determining the amount of data required for
the estimation of ST(f) are:
1. Specify the desired frequency resolution (in cycles per second).
2. Specify the confidence level and accuracy desired.
3. Use Equations 7-45a,b,c, and d, or Figures 7-9a,b,c, and d,
to determine the amount of data required.
The next steps relate to the construction of an estimate of S(f) over
a range of frequencies. The procedure is:
1. Specify the range of frequencies of interest.
2. Divide the range into intervals of width approximately equal
to the resolution.

3. Estimate S(f) at a point within each of these intervals.

Several issues have been avoided in the brief review of the estima-

tion of spectral densities given above. First, the relative merits of the

tﬂ
f(~)dr R ’o)
Ryl -7 spit)
T - .
Irl W (r)eioWIT
(a)
Um
Z 9 — 0
r (vA) Us-Um L ML
"'u“"\vi(uAul“""A
(b)

Figure 7-10 - Implementation for Spectral Density Estimates Based
on (a) continuous records (b) sampled-data records
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various window functions have not been examined. Secondly, the effect of

aliasing errors has not been discussed. These and other issues are dis-
cussed in references 57 through 61.

7.4 Application of Measurements to the Initial Propagation Experiments

This section gives the procedure for applying the results of the pre-
ceding section to the measurement of correlation functions and spectral
densities associated with the initial millimeter -wave propagation experi-
ments., Because of difficulties in implementing the hardware required to
perform the propagation experiments, it is wiser to restrict the initial
tests, in many instances, to the determination of the modified functions.
The results of the initial tests can be used for the intelligent design of

more complex tests which define the complete function.

A number of test signals have been considered for probing the channel
(Sections 4.1 and 5.3, First Quarterly Report). The AM waveform was
selected for the initial experiments since it represents a reasonable com-
promise between the resulting data and the complexity of measurement
equipment. While this section deals mainly with the application of the
results from the AM waveform, the procedure for treating other wave-

forms is quite similar.

7.4.1 Channel Functions Derived from Initial Experiments

The channel functions most likely to be measured directly during

the initial phase of the space-earth propagation experiments are:

a) Modified echo correlation function

b) Spaced-frequency correlation function
c) Modified echo power spectrum

d) Modified spatial correlation function

e) Modified spatial spectral density function

In addition to these channel functions, other functions derived




SP‘CE AND INFORMATION SYSTEMS DIVISION —m—

from radiometric data should be useful in investigating some of the causes
of these channel functions. They are:

a) Sky temperature autocorrelation function

b) Sky temperature - Signal amplitude cross-correlation function

c) Sky temperature spatial correlation function

7.4.2 Application of the AM Test Waveform

Consider the processing of data received as a result of probing the
channel with the AM test waveform discussed in the First Quarterly Report.
This waveform consists simply of a sinusoidal carrier amplitude modulated
by a single sinusoidal signal so as to produce two sidebands symmetrically
positioned around the carrier at a distance equal to the modulation frequency.
For the purpose of this discussion, we consider that the signals available for
processing are the envelopes of the signals received at the carrier and each
of the sideband frequencies. These signals are available for a finite obser-
vation interval of which we seek to determine minimum requirements. Of
course, signals other than the envelopes are available for processing.

These would be used to estimate channel quantities other than those con-

sidered here.

Let the signal be received at the carrier frequency be given by:
. - ~ . _]ZTTf T
sr(fc 1) = Re l:sr(fC T e c ] (7-53)
and at the two sideband frequencies by:
~ j +
s (f £f :1) = Re[s (f £f :7) eJZN (fc fm)T] (7-54)
rc m rc m

where Re [ ] denotes the real part of the bracketed expression and
;r(- T ) are complex envelope functions. The frequencies fc and fm are
the carrier and modulation frequencies, respectively. The three signals

available for processing are then:
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gr(fc + fm:-r) | = envelope of the signal received at the upper
sideband frequency, fc + fm.

~

Sr(fc:T)’ = envelope of the signal received at the carrier
frequency, fc.
gr(fc - fm: T) | =envelope of the signal received at the lower

i d - .
sideband frequency, fc fm

Measurement of the Modified Echo-Correlation Function

The complete echo-correlation function would not be measured
because of the short term instability of the millimeter -wave frequency
sources. Fade rates are expected to be one cycle per second or less for
stationary or slow-moving satellites, so that coherent measurements are

not terribly important in the initial experiments.

A
The modified echo-correlation function, R(A ), has been defined
by:
A
R{AT) = 2E |s (f:7 - ——)l 's (f:7 + —-—)

where E [ *] denotes ensemble of infinite -time averaging, which are assumed
to be equivalent, /I\{ (A7) is the correlation function associated with the fluctu-
ating envelope of the response of the channel to a single sinusoid. We seek

to obtain an estimate of ﬁ(A T), denoted by /f{T(AT ), based on an observa-
tion of [E'r(fcz T )] for a duration of T seconds (the envelopes at the side-

band frequencies could also be used).

In order to determine the amount of data required for the estima -

A
tion of R (A7) (that is, T), the following information is required:

1) an approximate value for {’\-c’ the coherence time of the/\channel.
If no a priori information is available, then a guess of Tc must
be made. Subsequent to initial measurements, the guess can be
appropriately modified.
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2) a value, or a range of values, of AT = A7/$C for which the

estimate is desired.

3) a specification of the desired accuracy and level of confidence
in the measurement. These can be conveniently expressed by

the single quantity, SNRT (A7),

In the case of the millimeter channel, Lee and Waterman(()l) have
A
reported that 7. is slightly less than 1 second. Their measurements were
made at 35 Gc over a 17 mile line -of-sight path. Therefore, an appropriate

first guess would be: T. = 1sec.

Suppose we wish to estimate IQ(O), then AT=0O. This quantity
would be required for an estimate of the variance of the amplitude fading.
Various accuracies and confidence levels, along with the corresponding
values of SNRT(A‘r ), as determined from Equations 7-15 and 7-16 in Section
7.3.1, are tabulated in Table 7- 4. The corresponding minimum observa-
tion times are also tabulated; these are determined from Figure 7-¢ or
from Equation 7-22 in Section 7.3. 1. If, for example, a 95% confidence
level and a #10% accuracy in the measurement of IQ(O) had been specified,

then an observation interval of about 14 minutes duration would be required.

TABLE 7-4
FACTORS DETERMINED FROM EQUATIONS 7-15 AND 7-16

Confidence Level Accuracy SNR—T—, (A7) Observation Time
(%) (%) (db) (sec) (min)

95 10 400 800 14,0

95 20 100 200 3.4

95 33 36 72 1.2

68 10 100 200 3.4

68 20 25 50 0.8
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This lengthy requirement can be reduced in three ways:

a) take multiple observations and average (The total duration
should still be about 14 min.);
b) reduce the specified level of confidence; and
c) reduce the specified accuracy.
As an example, a reduction of the confidence level to 68% for the same
accuracy (+10%) results in a reduction in the data required by a factor

of four which is 3.4 minutes.

Measurement of the Spaced-Frequency Correlation Function

The measured space-frequency correlation function will not be
complete, however, it is not modified in the same sense that the other
functions are modified. The relative phase between the two sidebands can
be measured. Therefore, the function will be sensitive to phase fluctua-
tion. However, since only one pair of sidebands is used at any given time
and since the choice of modulating frequency is limited, the correlation

function will be based on a small number of points in the frequency domain.

The spaced-frequency correlation function, R(Af), has been
defined by:

*
~ Af ~ Af
R(Af) = 2E [sr(f - T ) sr(f+ = ,-r)]

R(Af) is the cross-correlation function associated with the fluctuating
envelope of the response of the channel to two sinusoids separated by
Af cps. An estimate of R(Af) is obtained, based on the observation of
E’r(fc + fm; 7) and Er(fc - fm; 7 ) for a duration of T seconds. The

information required for determining the value of T for the estimation

of R(Af) is:

a) an approximate value for Fc’ the coherence bandwidth of the

channel;
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Af/ for which the

b) a value, or a range of values, of Af = F
c

estimate is desired; and

c) a specified accuracy and level of confidence.

In the case of the millimcter channel, approximate values of F. apparently

are not available. Consequently, a reasonable guess of F. ‘must be made

for initial calculations. Subsequent to measurements, the guess can be
odified. When a value of F_ is given, the procedure for determining T

parallels that for determining T in the modified echo-correlation function.

Measurement of the Modified Spatial Correlation Function

The spatial correlation function will probably be modified because
of the difficulties in providing a common receiver local oscillator signal to
two separate antenna systems. Measurement of the complete function is

certainly out of the question with moving satellites.

A
The modified spatial correlation function R(d), has been defined

by:
i\ Ad
R(Ad, A7) = 2E ||F_ (d-—-——, )| |5 (@55, T+ AT )|
where
g’r(d-%i-, T )l and Is (d+A2—d, TH+AT) are the envelopes

of the channel response to a single sinusoid at two receivers which are
spatially separated a distance, Ads. ﬁ(Ad,AT) is the cross-correlation
function associated with the two fluctuating envelopes. For the spaced-
antenna measurement, the estimate of ﬁ(Ad) is based on the observation of

the two envelopes for a duration of T seconds.

As before, the required information for determining the minimum

value of T is:

A A
a) an approximate value for Dc’ the coherence distance and TP’

the cross-coherence time;
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— A
b) a value, or a range of values, of Ad = Ad/DC and AT= A'l'/Tp
for which the estimate is desired; and

c) a specified accuracy and level of confidence.

In the case of the millimeter channel, Lee and Waterman (63) have
reported that ﬁc is about 20 feet, (measured at 35 Gc over a 17 mile hori-
zontal path) and Mondlock (64) pas reported the Bc to be in the same range
(measured at 50 Gc over a 10,4 mile horizontal over -water path with vertical
baseline).

Suppose we want to estimate lQ(Ad, 0) over a range of Ad of 15 to 30

feet, (one correlation distance). Various accuracies and confidence levels,

along with the corresponding values of SNRT(E), are tabulated in Table 7-5 .,

TABLE 7-5
ACCURACIES, CONFIDENCE LEVELS AND CORRESPONDING VALUES
OF SNR1 (d)
Confidence Level Accuracy SNR T(d) Observation Time
(%) (+%) (db) (sec) (min)
95 10 400 5700 95.0
95 20 100 750 12. 5
95 33 36 270 4.5
68 10 100 650 12. 5
68 20 25 180 3.0
68 33 9 67 1.1
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The corresponding minimum observation times are also tabulated. These
are determined from Figure 7-6 or from Equation 15 of Section 7. 3.1.
Time requirements can be reduced by:

(a) using multiple observations and averaging(total observation

time remains the same),
(b) reducing the specified accuracy;
(c) reducing the level of confidence or
+ (d) reduce the range of d for which the estimate is required.

Measurement of the Modifed Echo-Power Spectrum

\ A
The modified echo-power spectrum, ¢ (f) is the spectral density
associated with the fluctuating envelope of the response of the channel to a
A
single sinusoid. We seek to estimate o (f) based on an observation of

sr(fc: T) | for a duration of T seconds.

In order to determine the amount of data required for the estama-

tion of 9 (f), the following information is required:
(a) the desired resolution;
(b) the desired level of confidence, and
(c) the desired accuracy.

When these quantities are specified, T can be determined from Equations

34a, b, ¢, and d, or from Figures 7-9a .through 7-94 in Section 7. 3. 2.

As an example, suppose the desired resolution is 0.1 cps, the des-
ired accuracy is + 0.4db (or about + 10%), and the desired level of confidence
is 90%. Then, from Figure 7-9b, the minimum duration of a single obser-

vation is about 50 minutes. This requirement can be reduced by:
(a) taking multiple observations and averaging;

(b) requiring less resolution;
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(c) reducing the level of confidence; or
(d) reducing the accuracy.

For example, if the accuracy requirement is reduced to + 1 db
(or about 1 239% ) and all other requirements remain unchanged, the required

duration is reduced to approximately 8 minutes.

7.4.3 Processing Radiometric Data

The three functions involving rediometric sky temperature data
are processed in much the same manner as those for some of the channel

functions.

Table 7-6lists the three sky temperature functions and the cor-
responding channel functions which require the same mathematical approval

for processing.
TABLE 7-6

SKY TEMPERATURE FUNCTIONS AND THEIR
SIMILAR CHANNEL FUNCTIONS

Function Radiometric Channel Function

SkyTemperature Autocorrelation Modified Echo Correlation

Sky Temperature- Signal Amplitude Modified Spaced Frequency Correlation
Cross-Correlation Function
Modified Space Antenna Correlation

Sky Temperature Spatial Correlation
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Appendix I
DERIVATION OF AN EQUATION
FOR ERROR VARIANCE

This appendix shows the derivation of Equation 7-10 in Section 7. 3.1 for error

variance . By definition, error variance is

AY — 2 I LY 2 ]
0 ,‘;‘:.(r; = r_.[RT \1‘;] -R7{r
The principle term we need to determine is E Ei,i (1)] .

vz [roi]

2 1
ER (7)]| =E = x(t - 7) x(t, + 7)) x(t - 7)x(t + r)dt dt
I:T ] [r- -] [[ 2 b7 v e b e

-l/z[T-m] | (1-2)

Interchange the order of expectation and integration. Usingthe assumption that
x(t) is a sample function from a Gaussian process, as discussed in the main,.

text, the expectation occurring within the integral is:

_ - -1 -t +7 4
R% (7) + Rz(tl "z)+ R(tl t, )R(tl t T>-2mx
3

where m = E(x) is the expected value of x. Making the change variable,
p. &

-t
u= 1 2, Equation I-2 becomes:

u

]

1/2:[T—|r|]-t2

t,=1/2[T-in]

E[RT r].—. Rz(f) —Zm‘x4 +»_l_ —/][RZ(“) + R(u-7) R (;Hr\r)]dndtz
'[T r]z
=-1/2[T-171 ] ¢ (I-3)
U.2 /2[ T ] 2
t, = -1/2 [T -in1]

where the integration is over the area shown in Figure DS-8.

I-1
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By interchanging the order of integration in Equation I-3, it is possible
to obtain: '
+ [ T- Irl]

2 o2 4 2
E [RT(T )]- R(r) - me +ﬁ£|1 ; f [T- Il - htl][R (u) + Hu-ﬂ)R(u+r)]du

-[T"fl] (I-4)

1/2 [T-ITI ],n
: / u=1/2lT- il ] -TZ
]
!
| T- |rl u

-(T- 7l )

!
|
'
t

- 1/12[T i ]

Figure DS-8 Area of Integration

i ”[T- td I

op (1) =1 , /‘ (T- 171kl [Rz(u) + R(u-r) R(u+r)} du - 2m°
ey .

- [T- m] (1-5)

Usine Equation I-1:
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. 2 .
An alternate equatjon for O‘T(T), which is obtained by using
[r-11]

: 1 2 f('r-|r|-|m)du=1, is:
Tt

frin]
> [r- 1Tl
o_(t)= 1 2 4
T — (T-17] - lul) [R (u) + R(u-1) Rlu+T1) - 2m ] du
S| *

- [T- I r|] (1-6)
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Appendix I
DEFINITION OF THE PERIODOGRAM

This Appendix demonstrates that the periodogram (Equation 35,
Section 7.3.2) is:

T

T - |7l jenwf T
f} = —_——— -
PT( ) / T RT(T) e dr, (I1-1)

-T

where PT(f) is defined by Equation 30 in Section 7. 3. 2;

: 2
1
P = = [x(9] (11-2)

and RT (7) is defined by Equation 2 in Section 7. 3. 1.

1
2’( T -7l
1 T T
frlm)h = TR /X“'Tz’ AR (11-3)
1
-5 (T -l7l)

The definition of (x(b) is given by Equation 28 from Section 7. 3. 2.
T/2

X(f) = / x(t) e 2™ty (I1-4)

-T/2

With x(f) substituted into PT(f):

II-1
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T/2 T/2

1 jZﬂf(tl-t )
PT(f) = ? f ﬁ(tl ,)X(tz) e 2 dt) dtz (I1-5)
-T/2 -T/2
Let
tl - 1:2 = Tt , then
T/2 T/Z-tz
. jewfT _
PT(f) = T f fx(tz +7)x (tZ) e dr dt2 (I1-6)

t, = T/2 T = T/z-t2

By interchanging the order of integration (as in Appendix I), it is easy to

obtain:
P(f)———/ /x(t +7) x (t )eJZ“deTdtz
7=-T ¢t —-T/Z -7
T/2-71
+—[ / x(t,+7) x (t,) e jemiT drdt, (11-7)
T=o t =-T/2
/
Let t, =t2+'r/2

II-2
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(T+ T)
P(f) = —/ fc(t + /) x(t,o1/p) ¥ arat,
T=T t =+ —1—(T+'r)
1
T E(T-T)

’
1 jewfT !
——Tj fx(t2+7/2)x(t2 -'r/2 e d'rd!:2 (I1-8)

d 1
T=0 t2 =-5 (T -1)

T 5 (T-l7l)

PT(f) = ':i.—[ J[x(t2+ 1'/2) x (tZ-T/Z) e jZWdeT dt;_ (11-9)
o1
7=T t2 =-3 (T-|T)

Then, using the definition for RT(T) given by Equation II-3,

T

T - |7l j2ufT
= — - 7 11-10
PT(f) / T RT(T) e dr ( )

-T

II-3
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Appendix Il
SATELLITE ORBITAL CHARACTERISTICS

Symbols (See Figure III-1)

It

Earth's radius = 3440 nautical inches

satellite altitude - nautical miles

i

= orbital period - minutes

= elevation angle - degrees

SRERE S A

= coverage on earth's surface - degrees

o = vision angle - degrees

Rs = slant range - nautical miles
V = satellite velocity - miles/second
V4= doppler velocity - miles/second.
Formulas

T = (r + h) 3/2 minutes
2390

V= 250 nautical miles per second
(r + h) >

. 1/2
Maximum RS = h 1/Z(Zr + h) / nautical miles

+

a=2 sin-1 T degrees
r + h

-1
0 = cos r cos Y| - vy degrees
r h

II1-1
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Maximum V. = V sin

d

Graphs

Figure III-1

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure

Figure

III-2
III-3
I1I-4
III-5
I11-6
III-7
III-8
II1-9
III-10
III-11

I11-12

NIR

250 r nautical miles per second
(r+ h)3/2

Orbital Characteristics of a Satellite

Periods of Circular Orbits

Velocity of Circular Orbits

Maximum Slant Range vs Satellite Altitude
Coverage of Earth's Surface by a Satellite

Vision Angle of a Satellite

Slant Range vs Elevation Angle for a 6000 nmi
Satellite

Slant Range vs Elevation Angle for a Synchronous
Satellite

Coverage vs Elevation Angle for 6000 nmi Synch-
ronous Altitude Satellites

Vision Angle vs Elevation Angle for 6000 nmi
and Synchronous Altitude Satellites

Ground Range Versus Ground Station Latitude

for a Synchronous Satellite

Elevation Angle Versus Longitude Difference
between Synchronous Satellite and Ground Sta-
tion for various Ground Station Latitudes.
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2179

Figure III-1 Orbital Characteristics of a Satellite
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Figure III-6 Vision Angle of a Satellite
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Figure III-11 Ground Range vs Ground Station Latitude for a

Synchronous Satellite
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Appendix I¥
GAIN AND BEAMWIDTH OF
MILLIMETER-WAVE ANTENNAS

Figure No.

Iv-1 Beamwidth vs Diameter for Large MM Antennas
Iv-2 Gain vs Diameter for Large MM Antennas

Iv-3 Beamwidth vs Diameter for Small MM Antennas
v-4 Gain vs Diameter for Small MM Antennas

IvV-1
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Figure IV-1 Beamwidth vs Diameter for Large MM Antennas

Iv-2




* SPACE AND INFORMATION SYSTEMS DIVISION———

NN
N
~

N
(. N
Q \\
o \\
\\
\\
N

ANTENNA
N
N

AN

"

7 10 20 40 70 100 200
ANTENNA DIAMETER - FEET (L )

Figure IV-2 Gain vs Diameter for Large MM Antennas
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Figure IV-3 Beamwidth vs Diameter for Small MM Antennas
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